X. ,

, Merck) solution: 20 mg X-Gal/ml of N,N-Dimethylformamide (DMF; Sigma)

Z. , 100 ml Z-Buffer; 0.27 ml ?-Mercaptoethanol; 1.67 ml X-Gal solution. 2.5.2. Liquid culture assay

Z. , 100 ml Z-buffer; 0.27 ml ?-Mercaptoethanol

Z. , solution: dissolve 4 mg ONPG (o-nitrophenyl-?-D-galactopyranoside

, Sigma)/ ml Z-buffer (prepare ca. 1 hour before each use)

, 10x S-buffer (for 500 ml): 68 g KH 2 PO 4, vol.9

M. Vidal and P. Legrain, Yeast forward and reverse 'n'-hybrid systems, Nucleic Acids Res, vol.27, pp.919-948, 1999.

R. K. Brachmann and J. D. Boeke, Tag games in yeast: the two-hybrid system and beyond, Curr. Op. Biotech, vol.8, pp.561-568, 1997.

D. Thomas, H. Cherest, and Y. Surdin-kerjan, Elements involved in S-Adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene, Mol. Cell. Biol, vol.9, pp.3292-3298, 1989.

A. Devault, A. M. Martinez, D. Fesquet, J. C. Labbé, N. Morin et al., MAT1 ('ménage à trois') a new RING finger protein subunit stabilizing cuclin H-cdk7 complexes in starfish and Xenopus CAK, EMBO J, vol.14, pp.5027-5036, 1995.

J. P. Adamczewski, M. Rossignol, J. P. Tassan, E. A. Nigg, V. Moncollin et al., ) MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH, EMBO J, vol.15, pp.1877-1884, 1996.

K. Yankulov and D. L. Bentley, Regulation of CDK7 substrate specificity by MAT1 and TFIIH, EMBO J, vol.16, pp.1638-1646, 1997.

Y. Xiong, H. Zhang, and D. Beach, Subunit rearrangement of the cyclindependent kinases is associated with cellular transformation, Genes Dev, vol.7, pp.1572-83, 1993.

F. Tirode, C. Malaguti, F. Romero, R. Attar, J. Camonis et al., A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system, J. Biol. Chem, vol.272, pp.22995-22999, 1997.
URL : https://hal.archives-ouvertes.fr/inserm-02438566

A. B. Vojtek, S. M. Hollenberg, and J. A. Cooper, Mammalian Ras interacts directly with the serine/threonine kinase Raf, Cell, vol.74, pp.205-214, 1993.

P. Legrain, M. C. Dokhelar, and C. Transy, Detection of protein-protein interactions using different vectors in the two-hybrid system, Nucleic Acids Res, vol.22, pp.3241-3242, 1994.

F. Beranger, S. Aresta, J. De-gunzburg, and J. Camonis, Guetting more from the two-hybrid system: N-terminal fusions to LexA are efficient and sensitive baits for two-hybrid studies, Nucleic Acids Res, vol.25, pp.2035-2036, 1997.

P. Kerjan, H. Cherest, and Y. Surdin-kerjan, Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene, Nucleic Acids Res, vol.14, pp.7861-7871, 1986.

M. Johnston, A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae, Microbiol Rev, vol.51, pp.458-76, 1987.

L. M. Mylin and J. E. Hopper, Inducible expression cassettes in yeast: GAL4, Methods Mol Biol, vol.62, pp.131-179, 1997.

K. A. Bostian, J. M. Lemire, and H. O. Halvorson, Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae, Mol Cell Biol, vol.3, pp.839-53, 1983.

S. Labbe and D. J. Thiele, Copper ion inducible and repressible promoter systems in yeast, Methods Enzymol, vol.306, pp.145-53, 1999.

G. J. Mascorro, A. A. Covarrubias, and R. Gaxiola, Construction of a CUP1 promoter-based vector to modulate gene expression in Saccharomyces cerevisiae, Gene, vol.172, pp.169-70, 1996.

T. Mcgonigal, P. Bodelle, C. Schopp, and A. V. Sarthy, Construction of a sorbitol-based vector for expression of heterologous proteins in Saccharomyces cerevisiae, Appl Environ Microbiol, vol.64, pp.793-797, 1998.

I. Iraqui, S. Vissers, B. Andre, and A. Urrestarazu, Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae, Mol Cell Biol, vol.19, pp.3360-71, 1999.