T. Lammers, F. Kiessling, W. E. Hennink, and G. Storm, Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress, J Control Release, vol.161, pp.175-87, 2012.

H. Maeda, Macromolecular therapeutics in cancer treatment: the EPR effect and beyond, J Control Release, vol.164, pp.138-182, 2012.

S. Maillard, T. Ameller, J. Gauduchon, A. Gougelet, F. Gouilleux et al., Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma, J Steroid Biochem Mol Biol, vol.94, pp.111-132, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00389005

D. Crommelinand and A. T. Florence, Towards more effective advanced drug delivery systems, Int J Pharm, vol.454, pp.496-511, 2013.

G. Kong, R. D. Braun, and M. W. Dewhirst, Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature, Cancer Res, vol.61, pp.3027-3059, 2001.

A. Novell, J. M. Escoffre, C. Al-sabbagh, C. Mannaris, E. Fattal et al., Role of thermal and mechanical effects on drug release from thermosensitive nanocarriers, Ultrasonics Symposium (IUS), pp.1873-1879, 2012.

, i n dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition, Biochim Biophys Acta Biomembr, vol.1716, pp.77-96, 2005.

D. Needham, J. Y. Park, A. M. Wright, and J. H. Tong, Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin, Faraday Discuss, vol.161, pp.515-549, 2013.

M. B. Yatvin, J. N. Weinstein, W. H. Dennis, and R. Blumenthal, Design of liposomes for enhanced local release of drugs by hyperthermia, Science, vol.202, pp.1290-1293, 1978.

A. B. El-khoueiryand and H. J. Lenz, Should continuous infusion 5-fluorouracil become the standard of care in the USA as it is in Europe?, Cancer Investig, vol.24, pp.50-55, 2006.

P. M. Wilson, A. El-khoueiry, S. Iqbal, W. Fazzone, M. J. Labonte et al., A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy, Cancer Chemother Pharmacol, vol.65, pp.979-88, 2010.

W. E. Macmillan, W. H. Wolberg, and P. G. Welling, Pharmacokinetics of fluorouracil in humans, Cancer Res, vol.38, pp.3479-82, 1978.

R. Okeda, M. Shibutani, T. Matsuo, T. Kuroiwa, R. Shimokawa et al., Experimental neurotoxicity of 5-fluorouracil and its derivatives is due to poisoning by the monofluorinated organic metabolites, monofluoroacetic acid and alpha-fluoro-beta-alanine, Acta Neuropathol, vol.81, pp.66-73, 1990.

A. Y. Ozerand and H. Talsma, Preparation and stability of liposomes containing 5-fluorouracil, Int J Pharm, vol.55, pp.185-91, 1989.

M. Fresta, A. Villari, G. Puglisi, and G. Cavallaro, 5-Fluorouracil: various kinds of loaded liposomes: encapsulation efficiency, storage stability and fusogenic properties, Int J Pharm, vol.99, pp.145-56, 1993.

M. Glavas-dodov, E. Fredro-kumbaradzi, K. Goracinova, M. Simonoska, S. Calis et al., The effects of lyophilization on the stability of liposomes containing 5-FU, Int J Pharm, vol.291, pp.79-86, 2005.

A. M. Thomas, A. I. Kapanen, J. I. Hare, E. Ramsay, K. Edwards et al., Development of a liposomal nanoparticle formulation of 5-Fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy, J Control Release, vol.150, pp.212-221, 2011.

U. Pohlen, H. Buhr, G. Berger, J. Ritz, and C. Holmer, Hepatic arterial infusion (HAI) with PEGylated liposomes containing 5-FU improves tumor control of liver metastases in a rat model, Investig New Drugs, vol.30, pp.927-962, 2012.

L. Li, T. Hagen, D. Schipper, T. M. Wijnberg, G. C. Van-rhoon et al., Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia, J Control Release, vol.143, pp.274-283, 2010.

D. Needham and M. W. Dewhirst, The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors, Adv Drug Deliv Rev, vol.53, pp.285-305, 2001.

M. H. Gaber, K. L. Hong, S. K. Huang, and D. Papahadjopoulos, Thermosensitive sterically stabilized liposomes -formulation and in-vitro studies on mechanism of doxorubicin release by bovine serum and human plasma, Pharm Res, vol.12, pp.1407-1423, 1995.

S. C. Semple, A. Chonn, and P. R. Cullis, Influence of cholesterol on the association of plasma proteins with liposomes, Biochemistry, vol.35, pp.2521-2526, 1996.

A. D. Bangham, M. M. Standish, and J. C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, J Mol Biol, vol.13, pp.238-52, 1965.

J. Stewart, Colorimetric determination of phospholipids with ammonium ferrothiocyanate, Anal Biochem, vol.104, pp.10-14, 1980.

F. Ungaro, D. Rosa, G. Miro, A. Quaglia, and F. , Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations, J Pharm Biomed Anal, vol.31, pp.143-152, 2003.

C. Mannaris, E. Efthymiou, M. Meyre, and M. A. Averkiou, In vitro localized release of thermosensitive liposomes with ultrasoundinduced hyperthermia, Ultrasound Med Biol, vol.39, pp.2011-2031, 2013.

J. M. Escoffre, A. Novell, M. De-smet, and A. Bouakaz, Focused ultrasound mediated drug delivery from temperature-sensitive liposomes: invitro characterization and validation, Phys Med Biol, vol.58, pp.8135-51, 2013.

A. Al-ahmady, Z. S. Kostarelos, and K. , Pharmacokinetics & tissue distribution of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with mild hyperthermia, Biomaterials, vol.33, pp.4608-4625, 2012.

D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay et al., Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy, Proc Natl Acad Sci, vol.88, pp.11460-11464, 1991.

K. Djanashvili, T. Hagen, R. Blangé, D. Schipper, J. A. Peters et al., Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate, Bioorg Med Chem, vol.19, pp.1123-1153, 2011.

T. M. Allen, G. A. Austin, A. Chonn, L. Lin, and K. C. Lee, Uptake of liposomes by cultured mouse bone-marrow macrophages -influence of liposome composition and size, Biochim Biophys Acta, vol.1061, pp.56-64, 1991.

J. I. Hare, R. W. Neijzen, M. Anantha, D. Santos, N. Harasym et al., Treatment of colorectal cancer using a combination of liposomal irinotecan (Irinophore C (TM)) and 5-Fluorouracil, PLoS ONE, vol.8, p.62349, 2013.

B. Elorza, M. A. Elorza, G. Frutos, and J. R. Chantres, Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing extrusion methods-study of drug-release

, Biochim Biophys Acta, vol.1153, pp.135-177, 1993.

M. Wang, Y. Yuan, Y. Gao, H. M. Ma, H. T. Xu et al., Preparation and characterization of 5-fluorouracil pH-sensitive niosome and its tumor-targeted evaluation: in vitro and in vivo, Drug Dev Ind Pharm, vol.38, pp.1134-1175, 2012.

A. V. Semakov, A. A. Blinkov, G. P. Gaenko, A. G. Vostrova, and J. G. Molotkovsky, Synthesis and properties of lipophilic derivatives of 5-fluorouracil, Russ J Bioorg Chem, vol.39, pp.299-305, 2013.

E. Ramsay, J. Alnajim, M. Anantha, J. Zastre, H. Yan et al., A novel liposomal irinotecan formulation with significant anti-tumour activity: use of the divalent cation ionophore A23187 and coppercontaining liposomes to improve drug retention, Eur J Pharm Biopharm, vol.68, pp.607-624, 2008.

D. R. Lide, CRC handbook of chemistry and physics, internet version 2005, 2005.

S. Minko, Responsive polymer brushes, J Macromol Sci C, vol.46, pp.397-420, 2006.

T. Taand and T. M. Porter, Thermosensitive liposomes for localized delivery and triggered release of chemotherapy, J Control Release, vol.169, pp.112-137, 2013.

S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt et al., Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect, Clin Cancer Res, vol.13, pp.2722-2729, 2007.

M. De-smet, E. Heijman, S. Langereis, N. M. Hijnen, and H. Grull, Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study, J Control Release, vol.150, pp.102-112, 2011.

K. Ninomiya, S. Kawabata, H. Tashita, and N. Shimizu, Ultrasoundmediated drug delivery using liposomes modified with a thermosensitive polymer, Ultrason Sonochem, vol.21, pp.310-316, 2014.

K. Sasaki, N. H. Tsuno, E. Sunami, G. Tsurita, K. Kawai et al., Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells, Bmc Cancer, vol.10, p.370, 2010.

Y. T. Wen, S. R. Pan, X. Luo, X. Zhang, W. Zhang et al., A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector, Bioconjug Chem, vol.20, pp.322-354, 2009.

G. D. Heggie, J. Sommadossi, D. S. Cross, W. J. Huster, and R. B. Diasio, Clinical pharmacokinetics of 5-Fluorouracil and its metabolites in plasma, urine, and bile, Cancer Res, vol.47, pp.2203-2209, 1987.

Y. Jin, J. Li, L. F. Rong, X. W. Lu, Y. Huang et al., Pharmacokinetics and tissue distribution of 5-fluorouracil encapsulated by galactosylceramide liposomes in mice, Acta Pharmacol Sin, vol.26, pp.250-256, 2005.

, Textbook of small animal surgery, 2003.

A. J. Schroit, J. Madsen, and R. Nayar, Liposome-cell interactions-invitro discrimination of uptake mechanism and invivo targeting strategies to mononuclear phagocytes, Chem Phys Lipids, vol.40, pp.373-93, 1986.

M. Chadwick and W. I. Rogers, Physiological disposition of 5-fluorouracil in mice bearing solid l1210 lymphocytic leukemia, Cancer Res, vol.32, pp.1045-56, 1972.

P. Alvarez, J. A. Marchal, H. Boulaiz, E. Carrillo, C. Velez et al., 5-Fluorouracil derivatives: a patent review, Expert Opin Ther Patents, vol.22, pp.107-130, 2012.