P. Andre, C. Denis, C. Soulas, C. Bourbon-caillet, J. Lopez et al., Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells, Cell, vol.175, pp.1731-1743, 1713.
URL : https://hal.archives-ouvertes.fr/hal-02023782

J. M. Atienza, N. Yu, S. L. Kirstein, B. Xi, X. Wang et al., Dynamic and label-free cell-based assays using the real-time cell electronic sensing system, Assay and Drug Development Technologies, vol.4, pp.597-607, 2006.

J. M. Atienza, J. Zhu, X. Wang, X. Xu, and Y. Abassi, Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays, Journal of Biomolecular Screening, vol.10, pp.795-805, 2005.

F. A. Atienzar, K. Tilmant, H. H. Gerets, G. Toussaint, S. Speeckaert et al., The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models, Journal of Biomolecular Screening, vol.16, pp.575-587, 2011.

D. Bollino and T. J. Webb, Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy, Translational Research: The Journal of Laboratory and Clinical Medicine, vol.187, pp.32-43, 2017.

K. T. Brunner, J. Mauel, H. Rudolf, and B. Chapuis, Studies of allograft immunity in mice. I. Induction, development and in vitro assay of cellular immunity, Immunology, vol.18, pp.501-515, 1970.

F. Cerignoli, Y. A. Abassi, B. J. Lamarche, G. Guenther, D. Santa-ana et al., In vitro immunotherapy potency assays using real-time cell analysis, PLoS One, vol.13, 2018.

N. M. Dieckmann, G. L. Frazer, Y. Asano, J. C. Stinchcombe, and G. M. Griffiths, The cytotoxic T lymphocyte immune synapse at a glance, Journal of Cell Science, vol.129, pp.2881-2886, 2016.

C. L. Erskine, A. M. Henle, and K. L. Knutson, Determining optimal cytotoxic activity of human Her2neu specific CD8 T cells by comparing the Cr51 release assay to the xCELLigence system, Journal of Visualized Experiments, vol.66, p.3683, 2012.

F. Fasbender and C. Watzl, Impedance-based analysis of Natural Killer cell stimulation, Scientific Reports, vol.8, p.4938, 2018.

A. Frazao, M. Colombo, E. Fourmentraux-neves, M. Messaoudene, S. Rusakiewicz et al., Shifting the balance of activating and inhibitory natural killer receptor ligands on BRAF(V600E) melanoma lines with vemurafenib, Cancer Immunology Research, vol.5, pp.582-593, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01637027

A. Frazao, M. Messaoudene, N. Nunez, N. Dulphy, F. Roussin et al., , 2019.

, CD16(+)NKG2A(high) Natural Killer cells infiltrate breast cancer-draining lymph nodes, Cancer Immunology Research, vol.7, pp.208-218

G. Fregni, M. Messaoudene, E. Fourmentraux-neves, S. Mazouz-dorval, J. Chanal et al., Unique functional status of natural killer cells in metastatic stage IV melanoma patients and its modulation by chemotherapy, Clinical Cancer Research: An Official Journal of the American Association For Cancer Research, vol.8, pp.2628-2637, 2011.

J. Friedman, M. Morisada, L. Sun, E. C. Moore, M. Padget et al., Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies, Journal for Immunotherapy of Cancer, vol.6, p.59, 2018.

T. Gargett, N. Truong, L. M. Ebert, W. Yu, and M. P. Brown, Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype, Cytotherapy, vol.6, pp.593-602, 2019.

J. Glamann and A. J. Hansen, Dynamic detection of natural killer cell-mediated cytotoxicity and cell adhesion by electrical impedance measurements. Assay and Drug Development Technologies, vol.4, pp.555-563, 2006.

N. Guan, J. Deng, T. Li, X. Xu, J. T. Irelan et al., Label-free monitoring of T cell activation by the impedance-based xCELLigence system, Molecular BioSystems, vol.9, pp.1035-1043, 2013.

M. A. Karimi, E. Lee, M. H. Bachmann, A. M. Salicioni, E. M. Behrens et al., Measuring cytotoxicity by bioluminescence imaging outperforms the standard chromium-51 release assay, PLoS One, vol.9, p.89357, 2014.

N. Ke, X. Wang, X. Xu, and Y. A. Abassi, The xCELLigence system for real-time and label-free monitoring of cell viability, Methods in Molecular Biology, vol.740, pp.33-43, 2011.

G. G. Kim, V. S. Donnenberg, A. D. Donnenberg, W. Gooding, and T. L. Whiteside, A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: Comparisons to a 4 h 51Cr-release assay, Journal of Immunological Methods, vol.325, pp.51-66, 2007.

E. M. Mace, P. Dongre, H. T. Hsu, P. Sinha, A. M. James et al., Cell biological steps and checkpoints in accessing NK cell cytotoxicity, Immunology and Cell Biology, vol.92, pp.245-255, 2014.

M. Messaoudene, G. Fregni, E. Fourmentraux-neves, J. Chanal, E. Maubec et al., Mature cytotoxic CD56(bright)/CD16(+) natural killer cells can infiltrate lymph nodes adjacent to metastatic melanoma, Cancer Research, vol.74, pp.81-92, 2014.

M. C. Montoya, D. Sancho, M. Vicente-manzanares, and F. Sanchez-madrid, Cell adhesion and polarity during immune interactions, Immunological Reviews, vol.186, pp.68-82, 2002.

M. Morisada, E. C. Moore, R. Hodge, J. Friedman, H. A. Cash et al., Dose-dependent enhancement of T-lymphocyte priming and CTL lysis following ionizing radiation in an engineered model of oral cancer, Oral Oncology, vol.71, pp.87-94, 2017.

J. K. Peper, H. Schuster, M. W. Loffler, B. Schmid-horch, H. G. Rammensee et al., An impedance-based cytotoxicity assay for real-time and label-free assessment of T-cell-mediated killing of adherent cells, Journal of Immunological Methods, vol.405, pp.192-198, 2014.

A. Perier, G. Fregni, S. Wittnebel, S. Gad, M. Allard et al., Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma, Oncogene, vol.30, pp.2622-2632, 2011.

J. J. Quereda, L. Martinez-alarcon, L. Mendoca, M. J. Majado, J. M. Herrero-medrano et al., Validation of xCELLigence real-time cell analyzer to assess compatibility in xenotransplantation with pig-to-baboon model, Transplantation Proceedings, vol.42, pp.3239-3243, 2010.

A. Ribas and J. D. Wolchok, Cancer immunotherapy using checkpoint blockade, Science, vol.359, pp.1350-1355, 2018.

Y. S. Rocca, M. P. Roberti, E. P. Julia, M. B. Pampena, L. Bruno et al., Phenotypic and functional dysregulated blood NK Cells in colorectal cancer patients can be activated by Cetuximab Plus IL-2 or IL-15, Frontiers in Immunology, vol.7, p.413, 2016.

M. M. Roden, K. H. Lee, M. C. Panelli, and F. M. Marincola, A novel cytolysis assay using fluorescent labeling and quantitative fluorescent scanning technology, Journal of Immunological Methods, vol.226, pp.29-41, 1999.

M. Roshan-moniri, A. Young, K. Reinheimer, J. Rayat, L. J. Dai et al., Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA), Cytotechnology, vol.67, pp.379-386, 2015.

M. Sadelain, R. Brentjens, and I. Riviere, The basic principles of chimeric antigen receptor design, Cancer Discovery, vol.3, pp.388-398, 2013.

A. I. Salter, M. J. Pont, and S. R. Riddell, Chimeric antigen receptor-modified T cells: CD19 and the road beyond, Blood, vol.131, pp.2621-2629, 2018.

C. B. Schiller, T. A. Braciak, N. C. Fenn, U. J. Seidel, C. C. Roskopf et al., CD19-specific triplebody SPM-1 engages NK and gammadelta T cells for rapid and efficient lysis of malignant B-lymphoid cells, Oncotarget, vol.7, pp.83392-83408, 2016.

U. J. Seidel, F. Vogt, L. Grosse-hovest, G. Jung, R. Handgretinger et al., , 2014.

, Gammadelta T cell-mediated antibody-dependent cellular cytotoxicity with CD19 antibodies assessed by an impedance-based label-free real-time cytotoxicity assay, Frontiers in Immunology, vol.5, p.618

K. Shafer-weaver, S. Rosenberg, S. Strobl, W. Gregory-alvord, M. Baseler et al., Application of the granzyme B ELISPOT assay for monitoring cancer vaccine trials, Journal of Immunotherapy, vol.29, pp.328-335, 2006.

K. Shafer-weaver, T. Sayers, S. Strobl, E. Derby, T. Ulderich et al., The Granzyme B ELISPOT assay: An alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity, Journal of Translational Medicine, vol.1, p.14, 2003.

K. Solly, X. Wang, X. Xu, B. Strulovici, and W. Zheng, Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays, Assay and Drug Development Technologies, vol.2, pp.363-372, 2004.

S. S. Somanchi, K. J. Mcculley, A. Somanchi, L. L. Chan, and D. A. Lee, A novel method for assessment of Natural Killer cell cytotoxicity using image cytometry, PLoS One, vol.10, p.141074, 2015.

G. Toth, J. Szollosi, and G. Vereb, Quantitating ADCC against adherent cells: Impedance-based detection is superior to release, membrane permeability, or caspase activation assays in resolving antibody dose response, Cytometry. Part A: The Journal of the International Society for Analytical Cytology, vol.91, pp.1021-1029, 2017.

K. Watanabe, S. Kuramitsu, A. D. Posey, . Jr, and C. H. June, Expanding the therapeutic window for CAR T cell therapy in solid tumors: The knowns and unknowns of CAR T cell biology, Frontiers in Immunology, vol.9, p.2486, 2018.

L. Zaritskaya, M. R. Shurin, T. J. Sayers, and A. M. Malyguine, New flow cytometric assays for monitoring cell-mediated cytotoxicity, Expert Review of Vaccines, vol.9, pp.601-616, 2010.