K. Park, Controlled drug delivery systems: past forward and future back, J Control Release, vol.190, pp.3-8, 2014.

K. K. Jain, Current status and future prospects of drug delivery systems, Methods Mol Biol, vol.1141, pp.1-56, 2014.

J. M. Escoffre and A. Bouakaz, Therapeutic ultrasound, p.465, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02439296

I. Lentacker, I. De-cock, R. Deckers, S. C. De-smedt, and C. T. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms, Adv Drug Deliv Rev, vol.72, pp.49-64, 2014.

P. Qin, T. Han, A. C. Yu, and L. Xu, Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery, J Control Release, vol.272, pp.169-181, 2018.

G. Dimcevski, S. Kotopoulis, T. Bjanes, D. Hoem, J. Schjott et al., A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer, J Control Release, vol.243, pp.172-181, 2016.

S. Alli, C. A. Figueiredo, B. Golbourn, N. Sabha, M. Y. Wu et al., Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery, J Control Release, vol.281, pp.29-41, 2018.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria et al., Clinical trial of blood-brain barrier disruption by pulsed ultrasound, Sci Transl Med, vol.8, issue.343, pp.343-345, 2016.

R. Devulapally, T. Lee, A. Barghava-shah, T. V. Sekar, K. Foygel et al., Ultrasound-guided delivery of thymidine kinasenitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy, Nanomedicine (Lond, vol.13, issue.9, pp.1051-1066, 2018.

J. A. Kopechek, A. R. Carson, C. F. Mctiernan, X. Chen, E. C. Klein et al., Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound, PLoS One, vol.11, issue.7, p.159751, 2016.

H. Dewitte, S. Van-lint, C. Heirman, K. Thielemans, S. C. De-smedt et al., Lentacker, I. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy, J Control Release, vol.194, pp.28-36, 2014.

P. Y. Chen, H. Y. Hsieh, C. Y. Huang, C. Y. Lin, K. C. Wei et al., Focused ultrasound-induced blood-brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study, J Transl Med, vol.13, pp.41-52, 2015.

H. L. Liu, P. H. Hsu, C. Y. Lin, C. W. Huang, W. Y. Chai et al., Focused Ultrasound Enhances Central Nervous System Delivery of Bevacizumab for Malignant Glioma Treatment, Radiology, vol.281, issue.1, pp.99-108, 2016.

T. Kobus, I. K. Zervantonakis, Y. Zhang, and N. J. Mcdannold, Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption, J Control Release, vol.238, pp.281-288, 2016.

R. Alkins, A. Burgess, R. Kerbel, W. S. Wels, and K. Hynynen, Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival, Neuro Oncol, vol.18, issue.7, pp.974-81, 2016.

A. Burgess, C. A. Ayala-grosso, M. Ganguly, J. F. Jordao, I. Aubert et al., Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier, PLoS One, vol.6, issue.11, p.27877, 2011.

P. G. Sanches, H. Grull, O. C. Steinbach, and . See, reach, treat: ultrasound-triggered imageguided drug delivery, Ther Deliv, vol.2, issue.7, pp.919-953, 2011.

S. Song, G. Guo, Z. Jiang, Y. Jin, Z. Zhang et al., Self-Assembled Fe3O4/Polymer Hybrid Microbubble with MRI/Ultrasound Dual-Imaging Enhancement, Langmuir, vol.30, issue.35, pp.10557-10561, 2016.

N. Teraphongphom, P. Chhour, J. R. Eisenbrey, P. C. Naha, W. R. Witschey et al., Nanoparticle Loaded Polymeric Microbubbles as Contrast Agents for Multimodal Imaging, Langmuir, issue.43, pp.11858-11867, 2015.

B. Xu, H. Dou, K. Tao, K. Sun, J. Ding et al., Two-in-One" Fabrication of Fe3O4/MePEG-PLA Composite Nanocapsules as a Potential Ultrasonic/MRI Dual Contrast Agent, Langmuir, vol.27, issue.19, pp.12134-12142, 2011.

A. H. Liao, W. C. Ma, C. H. Wang, and M. K. Yeh, Penetration depth, concentration and efficiency of transdermal alpha-arbutin delivery after ultrasound treatment with albumin-shelled microbubbles in mice, Drug Deliv, vol.23, issue.7, pp.2173-2182, 2016.

J. M. Escoffre, A. Novell, S. Serriere, T. Lecomte, and A. Bouakaz, Irinotecan delivery by microbubble-assisted ultrasound: in vitro validation and a pilot preclinical study, Mol Pharm, issue.10, pp.2667-75, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02438593

B. H. Lammertink, C. Bos, R. Deckers, G. Storm, C. T. Moonen et al., Sonochemotherapy: from bench to bedside, Front Pharmacol, vol.6, p.138, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02438239

N. Lipsman, Y. Meng, A. J. Bethune, Y. Huang, B. Lam et al., Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound, Nat Commun, vol.9, issue.1, p.2336, 2018.

L. Auboire, C. A. Sennoga, J. M. Hyvelin, F. Ossant, J. M. Escoffre et al., Microbubbles combined with ultrasound therapy in ischemic stroke: A systematic review of in-vivo preclinical studies, Adv Exp Med Biol, vol.13, issue.2, pp.331-339, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01761337

H. Leong-poi, M. A. Kuliszewski, M. Lekas, M. Sibbald, K. Teichert-kuliszewska et al., Therapeutic arteriogenesis by ultrasoundmediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle, Circ Res, vol.101, issue.3, pp.295-303, 2007.

O. Shpak, M. Verweij, N. De-jong, M. Versluis, and . Droplets, Bubbles and Ultrasound Interactions, Adv Exp Med Biol, vol.880, pp.157-74, 2016.

T. Bettinger and F. Tranquart, Design of Microbubbles for Gene/Drug Delivery, Adv Exp Med Biol, vol.880, pp.191-204, 2016.

K. H. Martin and P. A. Dayton, Current status and prospects for microbubbles in ultrasound theranostics, Wiley Interdiscip Rev Nanomed Nanobiotechnol, issue.5, pp.329-374, 2013.

K. Kooiman, H. J. Vos, M. Versluis, and N. De-jong, Acoustic behavior of microbubbles and implications for drug delivery, Adv Drug Deliv Rev, vol.72, pp.28-48, 2014.

C. A. Sennoga, E. Kanbar, L. Auboire, P. A. Dujardin, D. Fouan et al., Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation, Expert Opin Drug Deliv, vol.14, issue.9, pp.149-55, 2006.

K. Kooiman, M. Foppen-harteveld, A. F. Van-der-steen, and N. De-jong, Sonoporation of endothelial cells by vibrating targeted microbubbles, J Control Release, vol.154, issue.1, pp.35-41, 2011.

J. A. Bera, D. Luan, Y. Van-der-steen, A. F. De-jong, N. Kooiman et al., Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles, J Control Release, vol.238, pp.197-211, 2016.

E. Vanbavel, Effects of shear stress on endothelial cells: possible relevance for ultrasound applications, Prog Biophys Mol Biol, vol.93, issue.1-3, pp.374-83, 2007.

J. Wu and W. L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells, Adv Drug Deliv Rev, vol.60, issue.10, pp.1103-1119, 2008.

J. Collis, R. Manasseh, P. Liovic, P. Tho, A. Ooi et al., Cavitation microstreaming and stress fields created by microbubbles, Ultrasonics, issue.2, pp.273-282, 2010.

J. Wu, Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells, Ultrasound Med Biol, vol.28, issue.1, pp.125-134, 2002.

A. A. Doinikov and A. Bouakaz, Theoretical investigation of shear stress generated by a contrast microbubble on the cell membrane as a mechanism for sonoporation, J Acoust Soc Am, vol.128, issue.1, pp.11-20, 2010.

C. Chen, Y. Gu, J. Tu, X. Guo, and D. Zhang, Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study, Ultrasonics, vol.66, pp.54-64, 2016.

B. Helfield, X. Chen, S. C. Watkins, and F. S. Villanueva, Biophysical insight into mechanisms of sonoporation, Proc Natl Acad Sci U S A, vol.113, issue.36, pp.9983-9992, 2016.

P. Marmottant and S. Hilgenfeldt, Controlled vesicle deformation and lysis by single oscillating bubbles, Nature, vol.423, issue.6936, pp.153-159, 2003.

Y. Qiu, C. Zhang, J. Tu, and D. Zhang, Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures, J Biomech, vol.45, issue.8, pp.1339-1384, 2012.

S. M. Nejad, H. Hosseini, H. Akiyama, and K. Tachibana, Reparable Cell Sonoporation in Suspension: Theranostic Potential of Microbubble, Theranostics, vol.6, issue.4, pp.446-55, 2016.

S. Ibsen, M. Benchimol, and S. Esener, Fluorescent microscope system to monitor real-time interactions between focused ultrasound, echogenic drug delivery vehicles, and live cell membranes, Ultrasonics, vol.53, issue.1, pp.178-84, 2013.

Y. Luan, G. Lajoinie, E. Gelderblom, I. Skachkov, A. F. Van-der-steen et al., Lipid shedding from single oscillating microbubbles, Ultrasound Med Biol, vol.40, issue.8, pp.1834-1880, 2014.

A. A. Doinikov and A. Bouakaz, Acoustic microstreaming around an encapsulated particle, J Acoust Soc Am, vol.127, issue.3, pp.1218-1245, 2010.

M. M. Forbes, W. D. O'brien, and . Jr, Development of a theoretical model describing sonoporation activity of cells exposed to ultrasound in the presence of contrast agents, J Acoust Soc Am, vol.131, issue.4, pp.2723-2732, 2012.

M. Postema, A. Van-wamel, C. T. Lancee, and N. De-jong, Ultrasound-induced encapsulated microbubble phenomena, Ultrasound Med Biol, vol.30, issue.6, pp.827-867, 2004.

Y. Qiu, Y. Luo, Y. Zhang, W. Cui, D. Zhang et al., The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro, Ultrasound Med Biol, vol.145, issue.1, pp.691-700, 1992.

F. M. Goni, The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model, Biochim Biophys Acta, issue.6, pp.1467-76, 1838.

K. Koshiyama, T. Kodama, T. Yano, and S. Fujikawa, Structural change in lipid bilayers and water penetration induced by shock waves: molecular dynamics simulations, Biophys J, vol.91, issue.6, pp.2198-205, 2006.

K. Koshiyama, T. Kodama, T. Yano, and S. Fujikawa, Molecular dynamics simulation of structural changes of lipid bilayers induced by shock waves: Effects of incident angles, Biochim Biophys Acta, issue.6, pp.1423-1431, 1778.

K. Koshiyama, T. Yano, and T. Kodama, Self-organization of a stable pore structure in a phospholipid bilayer, Phys Rev Lett, vol.105, issue.1, p.18105, 2010.

S. Mehier-humbert, T. Bettinger, F. Yan, and R. H. Guy, Plasma membrane poration induced by ultrasound exposure: implication for drug delivery, J Control Release, vol.104, issue.1, pp.213-235, 2005.

F. Yang, N. Gu, D. Chen, X. Xi, D. Zhang et al., Experimental study on cell self-sealing during sonoporation, J Control Release, vol.131, issue.3, pp.205-215, 2008.

Y. Z. Zhao, Y. K. Luo, C. T. Lu, J. F. Xu, J. Tang et al., Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane cultured in vitro, J Drug Target, vol.16, issue.1, pp.18-25, 2008.

M. Duvshani-eshet and M. Machluf, Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization, J Control Release, vol.108, issue.2-3, pp.513-541, 2005.

A. Zeghimi, J. M. Escoffre, and A. Bouakaz, Role of endocytosis in sonoporation-mediated membrane permeabilization and uptake of small molecules: a electron microscopy study, Phys Biol, vol.12, issue.6, p.66007, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02438214

M. Postema, A. Van-wamel, F. J. Ten-cate, and N. De-jong, High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles, Med Phys, vol.32, issue.12, pp.3707-3718, 2005.

C. D. Ohl, M. Arora, R. Ikink, N. De-jong, M. Versluis et al., Sonoporation from jetting cavitation bubbles, Biophys J, vol.91, issue.11, pp.4285-95, 2006.

S. S. Cook, Erosion by water-hammer, Proc Roy Soc London A, issue.119, pp.1131-1134, 1928.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, Membrane disruption by optically controlled microbubble cavitation, Nature Phys, vol.1, pp.107-110, 2005.

N. Kudo, K. Okada, and K. Yamamoto, Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells, Biophys J, vol.96, issue.12, pp.4866-76, 2009.

M. C. Oswald, N. Garnham, S. T. Sweeney, and M. Landgraf, Regulation of neuronal development and function by ROS, FEBS Lett, vol.592, issue.5, pp.679-691, 2018.

Y. Ishimoto, T. Tanaka, Y. Yoshida, and R. Inagi, Physiological and Pathophysiological Role of Reactive Oxygen Species and Reactive Nitrogen Species in the Kidney, Clin Exp Pharmacol Physiol, 2018.

R. M. Cordeiro, Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation, Biochim Biophys Acta, issue.1, pp.438-482, 1838.

D. H. Wei, X. L. Zhang, R. Wang, J. F. Zeng, K. Zhang et al., Oxidized lipoprotein(a) increases endothelial cell monolayer permeability via ROS generation, Lipids, vol.48, issue.6, pp.579-86, 2013.

L. J. Juffermans, P. A. Dijkmans, R. J. Musters, C. A. Visser, and O. Kamp, Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide, Am J Physiol Heart Circ Physiol, vol.291, issue.4, pp.1595-601, 2006.

L. J. Juffermans, A. Van-dijk, C. A. Jongenelen, B. Drukarch, A. Reijerkerk et al., Ultrasound and microbubble-induced intra-and intercellular bioeffects in primary endothelial cells, Ultrasound Med Biol, vol.35, issue.11, pp.1917-1944, 2009.

K. S. Leung, X. Chen, W. Zhong, A. C. Yu, and C. Y. Lee, Microbubble-mediated sonoporation amplified lipid peroxidation of Jurkat cells, Chem Phys Lipids, vol.180, pp.53-60, 2014.

J. Wong-ekkabut, Z. Xu, W. Triampo, I. M. Tang, D. P. Tieleman et al., Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study, Biophys J, vol.93, issue.12, pp.4225-4261, 2007.

V. Lionetti, A. Fittipaldi, S. Agostini, M. Giacca, F. A. Recchia et al., Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro, Ultrasound Med Biol, vol.35, issue.1, pp.136-179, 2009.

J. M. Escoffre, P. Campomanes, M. Tarek, A. Bouakaz, N. De-jong et al., New insights in the role of ROS in mechanisms of sonoporation-mediated gene delivery, The 23rd European Symposium on Ultrasound Contrast Imaging, vol.23, pp.41-43, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02488866

J. Wu, Temperature rise generated by ultrasound in the presence of contrast agent, Ultrasound Med Biol, vol.24, issue.2, pp.267-74, 1998.

R. Lawaczeck, M. Kainosho, and S. I. Chan, The formation and annealing of structural defects in lipid bilayer vesicles, Biochim Biophys Acta, vol.443, issue.3, pp.313-343, 1976.

T. Y. Tsong, Effect of phase transition on the kinetics of dye transport in phospholipid bilater structures, Biochemistry, vol.14, issue.25, pp.5409-5423, 1975.

V. F. Antonov, V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and A. S. Ivanov, The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature, Nature, vol.283, issue.5747, pp.585-591, 1980.

G. Boheim, W. Hanke, and H. Eibl, Lipid phase transition in planar bilayer membrane and its effect on carrier-and pore-mediated ion transport, Proc Natl Acad Sci U S A, vol.77, issue.6, pp.3403-3410, 1980.

Z. Fan, H. Liu, M. Mayer, and C. X. Deng, Spatiotemporally controlled single cell sonoporation, Proc Natl Acad Sci U S A, vol.109, issue.41, pp.16486-91, 2012.

Y. Hu, J. M. Wan, and A. C. Yu, Membrane perforation and recovery dynamics in microbubble-mediated sonoporation, Ultrasound Med Biol, vol.39, issue.12, pp.2393-405, 2013.

Z. Fan, D. Chen, and C. X. Deng, Characterization of the dynamic activities of a population of microbubbles driven by pulsed ultrasound exposure in sonoporation, Ultrasound Med Biol, vol.40, issue.6, pp.1255-1263, 2004.

L. J. Juffermans, O. Kamp, P. A. Dijkmans, C. A. Visser, and R. J. Musters, Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels, Ultrasound Med Biol, vol.34, issue.3, pp.502-510, 2008.

B. D. Meijering, L. J. Juffermans, A. Van-wamel, R. H. Henning, I. S. Zuhorn et al., Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation, Circ Res, vol.104, issue.5, pp.679-87, 2009.

C. X. Deng, F. Sieling, H. Pan, and J. Cui, Ultrasound-induced cell membrane porosity, Ultrasound Med Biol, vol.30, issue.4, pp.519-545, 2004.

Z. Fan, R. E. Kumon, J. Park, and C. X. Deng, Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles, J Control Release, vol.142, issue.1, pp.31-40, 2010.

M. Afadzi, S. P. Strand, E. A. Nilssen, S. E. Masoy, T. F. Johansen et al., Microbubble mediated sonoporation of cells in suspension: clonogenic viability and influence of molecular size on uptake, IEEE Trans Ultrason Ferroelectr Freq Control, vol.60, issue.1, pp.691-698, 2010.

M. Duvshani-eshet, L. Baruch, E. Kesselman, E. Shimoni, and M. Machluf, Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy, Gene Ther, vol.13, issue.2, pp.163-72, 2006.

Y. Zhou, K. Yang, J. Cui, J. Y. Ye, and C. X. Deng, Controlled permeation of cell membrane by single bubble acoustic cavitation, J Control Release, vol.157, issue.1, pp.103-114, 2012.

I. De-cock, E. Zagato, K. Braeckmans, Y. Luan, N. De-jong et al., Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis, J Control Release, vol.197, pp.20-28, 2015.

Y. Zhou, J. Shi, J. Cui, and C. X. Deng, Effects of extracellular calcium on cell membrane resealing in sonoporation, J Control Release, vol.126, issue.1, pp.34-43, 2008.

Y. Zhou, R. E. Kumon, J. Cui, and C. X. Deng, The size of sonoporation pores on the cell membrane, Ultrasound Med Biol, vol.35, issue.10, pp.1756-60, 2009.

P. Qin, L. Xu, Y. Hu, W. Zhong, P. Cai et al., Sonoporationinduced depolarization of plasma membrane potential: analysis of heterogeneous impact, Ultrasound Med Biol, vol.40, issue.5, pp.979-89, 2014.

C. Y. Lai, C. H. Wu, C. C. Chen, and P. C. Li, Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability, Ultrasound Med Biol, vol.32, issue.12, pp.1931-1972, 2006.

P. Qin, L. Xu, T. Han, L. Du, and A. C. Yu, Effect of non-acoustic parameters on heterogeneous sonoporation mediated by single-pulse ultrasound and microbubbles, Ultrason Sonochem, vol.31, pp.107-122, 2016.

Y. Zhou, J. Cui, and C. X. Deng, Dynamics of sonoporation correlated with acoustic cavitation activities, Biophys J, vol.94, issue.7, pp.51-54, 2008.

A. Draeger, K. Monastyrskaya, and E. B. Babiychuk, Plasma membrane repair and cellular damage control: the annexin survival kit, Biochem Pharmacol, vol.81, issue.6, pp.703-715, 2011.

N. W. Andrews, P. E. Almeida, and M. Corrotte, Damage control: cellular mechanisms of plasma membrane repair, Trends Cell Biol, vol.24, issue.12, pp.734-742, 2014.

X. Chen, R. S. Leow, Y. Hu, J. M. Wan, and A. C. Yu, Single-site sonoporation disrupts actin cytoskeleton organization, J R Soc Interface, vol.11, issue.95, 2014.

M. Wang, Y. Zhang, C. Cai, J. Tu, X. Guo et al., Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubblecell parameters, Sci, vol.8, issue.1, p.3885, 2018.

J. M. Escoffre, M. Derieppe, B. Lammertink, C. Bos, and C. Moonen, Microbubble-Assisted Ultrasound-Induced Transient Phosphatidylserine Translocation, Ultrasound Med Biol, vol.43, issue.4, pp.838-851, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02438167

F. Hussein, C. Antonescu, and R. Karshafian, Ultrasound and microbubble induced release from intracellular compartments, BMC Biotechnol, vol.17, issue.1, p.45, 2017.

Y. Yuana, L. Jiang, B. H. Lammertink, P. Vader, R. Deckers et al., Microbubbles-assisted ultrasound triggers the release of extracellular vesicles, Int J Mol Sci, vol.18, pp.1-12, 1610.

R. K. Schlicher, J. D. Hutcheson, H. Radhakrishna, R. P. Apkarian, and M. R. Prausnitz, Changes in cell morphology due to plasma membrane wounding by acoustic cavitation, Ultrasound Med Biol, vol.36, issue.4, pp.677-92, 2010.

N. W. Andrews, M. Corrotte, and T. Castro-gomes, Above the fray: Surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair, Semin Cell Dev Biol, vol.45, pp.10-17, 2015.

M. Fine, M. C. Llaguno, V. Lariccia, M. J. Lin, A. Yaradanakul et al., Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains, J Gen Physiol, vol.137, issue.2, pp.137-54, 2011.

V. Lariccia, M. Fine, S. Magi, M. J. Lin, A. Yaradanakul et al., Massive calcium-activated endocytosis without involvement of classical endocytic proteins, J Gen Physiol, vol.137, issue.1, pp.111-143, 2011.

H. T. Mcmahon and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis, Nat Rev Mol Cell Biol, vol.12, issue.8, pp.517-550, 2011.

P. Lajoie and I. R. Nabi, Lipid rafts, caveolae, and their endocytosis, Int Rev Cell Mol Biol, vol.282, pp.135-163, 2010.

M. Derieppe, K. Rojek, J. M. Escoffre, B. D. De-senneville, C. Moonen et al., Recruitment of endocytosis in sonopermeabilization-mediated drug delivery: a real-time study, Phys Biol, vol.12, issue.4, p.46010, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159814

J. L. Lee, C. W. Lo, C. Inserra, J. C. Bera, and W. S. Chen, Ultrasound enhanced PEImediated gene delivery through increasing the intracellular calcium level and PKC-delta protein expression, Pharm Res, vol.31, issue.9, pp.2354-66, 2014.

G. Apodaca, Modulation of membrane traffic by mechanical stimuli, Am J Physiol Ren Physiol, vol.282, pp.179-190, 2002.

J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis, Biochem J, vol.377, pp.159-69, 2004.

F. Fekri, R. C. Santos, R. Karshafian, and C. N. Antonescu, Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms, PLoS One, vol.11, issue.6, p.156754, 2016.

E. C. Yusko and C. L. Asbury, Force is a signal that cells cannot ignore, Mol Biol Cell, vol.25, issue.23, pp.3717-3725, 2017.

M. Furthauer and E. Smythe, Systems dynamics in endocytosis, Traffic, vol.15, issue.3, pp.338-384, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968732

M. Sato, K. Nagata, S. Kuroda, S. Horiuchi, T. Nakamura et al., Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells, Ann Biomed Eng, vol.42, issue.10, pp.2156-63, 2014.

N. P. Whitney, A. C. Lamb, T. M. Louw, and A. Subramanian, Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes, Ultrasound Med Biol, vol.38, issue.10, pp.1734-1777, 2012.

T. A. Tran, S. Roger, J. Y. Le-guennec, F. Tranquart, and A. Bouakaz, Effect of ultrasound-activated microbubbles on the cell electrophysiological properties, Ultrasound Med Biol, vol.33, issue.1, pp.158-63, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141873

T. L. Szabo, Diagnostic ultrasond imaging: Inside out, 2013.

I. Lentacker, B. G. De-geest, R. E. Vandenbrouke, L. Peeters, J. Demeester et al., Ultrasound-Responsive Polymer-Coated Microbubbles That Bind and Protect DNA, Langmuir, vol.22, issue.17, pp.7273-7278, 2006.

S. Rossi, G. Waton, and M. P. Krafft, Phospholipid-Coated Gas Bubble Engineering: Key Parameters for Size and Stability Control, as Determined by an Acoustical Method, Langmuir, vol.26, issue.3, pp.1649-1655, 2010.

N. H. Tsao and E. A. Hall, Enzyme-Degradable Hybrid Polymer/Silica Microbubbles as Ultrasound Contrast Agents, Langmuir, vol.32, issue.25, pp.6534-6543, 2016.

R. H. Abou-saleh, M. Swain, S. D. Evans, N. H. Thomson, and . Poly,

, Lipid-Shelled Microbubbles: Abundance, Stability, and Mechanical Properties, vol.30, pp.5557-5563, 2014.

J. M. Escoffre, J. Piron, A. Novell, and A. Bouakaz, Doxorubicin delivery into tumor cells with ultrasound and microbubbles, Mol Pharm, vol.8, issue.3, pp.799-806, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02438975

S. H. Bloch, M. Wan, P. A. Dayton, and K. W. Ferrara, Optical observations of lipid-and polymer-shelled ultrasound microbubble contrast agents, Applied Physics Letters, vol.84, issue.4, pp.631-633, 2004.

A. Bouakaz, M. Versluis, and N. De-jong, High-speed optical observations of contrast agent destruction, Ultrasound Med Biol, vol.31, issue.3, pp.391-400, 2005.

K. Hettiarachchi, S. Zhang, S. Feingold, A. P. Lee, and P. A. Dayton, Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy, Biotechnol Prog, vol.25, issue.4, pp.938-983, 2009.

E. Talu, K. Hettiarachchi, R. L. Powell, A. P. Lee, P. A. Dayton et al., Maintaining Monodispersity in a Microbubble Population Formed by Flow-Focusing, Langmuir, vol.24, issue.5, pp.1745-1749, 2008.

F. E. Angilè, K. B. Vargo, C. M. Sehgal, D. A. Hammer, and D. Lee, Recombinant Protein-Stabilized Monodisperse Microbubbles with Tunable Size Using a Valve-Based Microfluidic Device, Langmuir, vol.30, issue.42, pp.12610-12618, 2014.

M. R. Bohmer, J. A. Steenbakkers, and C. Chlon, Monodisperse polymeric particles prepared by ink-jet printing: double emulsions, hydrogels and polymer mixtures, Colloids Surf B Biointerfaces, vol.79, issue.1, pp.47-52, 2010.

A. Novell, C. A. Sennoga, J. M. Escoffre, J. Chaline, and A. Bouakaz, Evaluation of chirp reversal power modulation sequence for contrast agent imaging, Phys Med Biol, vol.59, issue.17, pp.5101-5118, 2014.

M. Ward, J. Wu, and J. F. Chiu, Experimental study of the effects of Optison concentration on sonoporation in vitro, Ultrasound Med Biol, vol.26, issue.7, pp.1169-75, 2000.

S. L. Gac, E. Zwaan, . Van-den, A. Berg, and C. D. Ohl, Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement, Lab Chip, vol.7, issue.12, pp.1666-72, 2007.

M. J. Shortencarier, P. A. Dayton, S. H. Bloch, P. A. Schumann, T. O. Matsunaga et al., A method for radiation-force localized drug delivery using gas-filled lipospheres, IEEE Trans Ultrason Ferroelectr Freq Control, vol.51, issue.7, pp.822-853, 2004.

P. J. Frinking, I. Tardy, M. Theraulaz, M. Arditi, J. Powers et al., Effects of acoustic radiation force on the binding efficiency of BR55, a VEGFR2-specific ultrasound contrast agent, Ultrasound Med Biol, vol.38, issue.8, pp.1460-1469, 2012.

B. Geers, I. Lentacker, N. N. Sanders, J. Demeester, S. Meairs et al., Selfassembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery, J Control Release, vol.152, issue.2, pp.249-56, 2011.

A. Delalande, C. Bastié, L. Pigeon, S. Manta, M. Lebertre et al., Cationic gas-filled microbubbles for ultrasound-based nucleic acids delivery, J Control Release, vol.37, issue.6, p.20160619, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02123147

J. M. Escoffre, C. Mannaris, B. Geers, A. Novell, I. Lentacker et al., Doxorubicin liposome-loaded microbubbles for contrast imaging and ultrasoundtriggered drug delivery, IEEE Trans Ultrason Ferroelectr Freq Control, vol.60, issue.1, pp.78-87, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02438665

J. R. Eisenbrey, M. C. Soulen, and M. A. Wheatley, Delivery of encapsulated Doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents, IEEE Trans Biomed Eng, vol.57, issue.1, pp.24-32, 2010.

C. H. Fan, C. Y. Ting, C. Y. Lin, H. L. Chan, Y. C. Chang et al., Targeted, and Non-Viral Ultrasound-Mediated GDNF-Plasmid Delivery for Treatment of Parkinson's Disease. Sci Rep, vol.6, 2016.

M. A. Borden, C. F. Caskey, E. Little, R. J. Gillies, and K. W. Ferrara, DNA and Polylysine Adsorption and Multilayer Construction onto Cationic Lipid-Coated Microbubbles, Langmuir, vol.23, issue.18, pp.9401-9408, 2007.

B. Geers, I. Lentacker, A. Alonso, N. N. Sanders, J. Demeester et al., Elucidating the mechanisms behind sonoporation with adeno-associated virus-loaded microbubbles, Mol Pharm, vol.8, issue.6, pp.2244-51, 2011.

N. Sasaki, N. Kudo, K. Nakamura, S. Y. Lim, M. Murakami et al., Ultrasound image-guided therapy enhances antitumor effect of cisplatin, J Med Ultrason, issue.1, pp.11-21, 2001.

G. Ter-haar, A. Shaw, S. Pye, B. Ward, F. Bottomley et al., Guidance on reporting ultrasound exposure conditions for bio-effects studies, Ultrasound Med Biol, vol.37, issue.2, pp.177-83, 2011.

J. M. Escoffre, A. Novell, J. Piron, A. Zeghimi, A. Doinikov et al., Microbubble attenuation and destruction: are they involved in sonoporation efficiency?, IEEE Trans Ultrason Ferroelectr Freq Control, vol.60, issue.1, pp.46-52, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02438857

Z. Fan, D. Chen, and C. X. Deng, Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles, J Control Release, vol.170, issue.3, pp.401-414, 2013.