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ABSTRACT

Therapeutic ultrasound strategies are actively under development to harness the mechanical
activity of cavitation nucleifor beneficial tissue bioeffects. The mechanical oscillations of
circulating microbubblesthe mostwidely investigatedcavitation nuclei which may also
encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized
uptake. Qcillating microbubbles can create stresses either on nearby tissue or in surrounding
fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune
system, biofilm, or tumors. This review summarizes recent investigatiansatea elucidated
interactions of ultrasound andavitation nucleiwith cells, the treatment of tumors,
immunotherapythe blood brain barrier and blood spinal cord barrsemothrombolysis,
cardiovascular drug deliveryand sonobactericide. In particulaan overview of salient
ultrasound features, drug delivery vehicles, therapeutic transport routes, and preclinical and
clinical studies is provided. Successful implementation of ultrasoundanthtion nuclei
mediated drug delivery has the potential dbange the way drugs are administered

systemically, resulting in more effective therapeutics andifessive treatments.

Key words:Ultrasound,Cavitation nuclei,Therapy,Drug delivery, Bubblecell interaction,

SonoporationSonothrombolysisBlood-brain barrier openingsonobactericideTumor.
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INTRODUCTION

Around the start of the European Symposium on Ultrasound Contrast Agents (ESUCI),

ultrasouneresponsive cavitation nuclei were reported to have therapeutic potential
Thrombolysis wasshown to beacceleratedn vitro (Tachibana and Tachibana 19%)d
cultured cells were transfectedth plasmid DNA(Bao, et al. 1997)Since thenmnany research
groups have investigated the use of cavitation ndicitanultiple forms oftherapy including
both tissue ablation amfugandgenedelivery. In the early years, thmost widely invetigated
cavitation nucleiweregas microbubbles, ~10 um in diameteand coated with a stabilizing
shell whereas nowadaysth solid and liquichucleiare also investigated that can be as small
as a few hundred nndrugs can be cadministered with theavitation nuclei or loadeith or
onthem(Lentacker, et al. 2009, Kooiman, et al. 20I#)e diseases that can be treated with
ultrasouneresponsivecavitation nuclei includéut are not limited t@ardiovascular disease
and cance(Sutton, et al. 2013, Paefgest, al. 2015) the currentleading cases of death
worldwide according to the World Health Organizatidfowbar, et al. 2019)This review
focuses on théatest insightanto cavitation nucleifor therapy and drug deliveriyom the
physial and biological mechanisms of bublaell interaction tgreclinical (bothin vitro and

in vivo) and clinical studie@imespan 20142019) with particular emphasisn thekey clinical
applications. The applications covered in this review atbe treatment of tumors,
immunotherapythe blood brain barrier and blood spinal cord barakgssolution of clots,

cardiovascular drug delivergnd tre treatment of bacterial infections.

CAVITATION NUCLEI FO R THERAPY
The most widely used cavitation nuclei are phosphcigodated microbubbles with a gas
core. For the 12 preclinical studiesncludedin the treatment sectiors this review the

commercally available and clinically approved Defirfty (Luminity® in Europe;



79 octafluoropropane gas core, phospholipid coatii@efinity® 2011, Nolsge and Lorentzen
80 2016)microbubbles were used the most (in 22 studies). Definitys used for studies on all
81 applications discised here and the most for opening the blood brain barrier (BBB) (12
82 studies). SonoVUu€E (Lumasof? in the USA) is commercially available and clinically
83 approved as well (sulfur hexafluorigas core, phospholipid coatingumaso 2016, Nolsge
84 and Lorentzen 201&ndwas used in a total of 14 studies for the treatment ocfonaim tumors
85 (for exampleXing et al. (2016), BBB opening (for exampl&outal et al.(2018), and
86 sonobactericide (for exampleu et al.(2018). Other commercially available microbubbles
87 were used that are not clinically approved, such as ER&3neider, et al. 2011) the study
88 by Wang et al(2015d)and MicroMarker(VisualSonics)n the study by Theek et gR016)
89 Custommade microbubbles are as diverse as their applications, with special characteristics
90 tailored to enhance different therapeutic strategies. Different typességaere used as the
91 core such as air (for examgkggen et al(2014), nitrogen (for exampl®ixon et al.(2019),
92 oxygen (for exampl€&ix et al.(2018), octafluoropropane (for exampRandit et al(2019),
93 perfluorobutane (for examplBewitte et al.(2015), sulfur hexafluoride(Bae, et al. 2016,
94 Horsley, et al. 2019r a mixture of gass such as nitric oxide and octafluoropropgsgton,
95 etal. 2014pr sulfur hexafluoride and oxygéNcEwan, et al. 2015While fluorinated gases
96 improve the stability of phospholipicbated microbuldbs(Rossi, et al. 2011bther gases can
97 be loaded for therapeutic applications, suclagen to treat tumor@vicEwan, et al. 2015,
98 Fix, et al. 2018, Nesbitt, et al. 201&)d nitric oxidgKim, et al. 2014, Sutton, et al. 2014
99 hydrogen gagHe, et al. 201 7jor treatment of cardiovascular disease. The main phospholipid
100 component of custormade microbubbles is uslly a phosphatidylcholine such ds2-
101 dipalmitoylsnglycerc3-phosphocholine (DPPCused in 13 studies, for examewitte et
102 al.(2015) Bae et al(2016) Chen et al(2016) Fu et al(2019) or 1,2-distearoysnglycerc

103 3-phosphocholine (DSPCused in 18 studies, for examdéroy et al. (2014) Bioley et al
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(2015) Dong et al (2017) Goyal et a2017) Pandit et al(2019) These phospholipids are
popular because they are also the main component in DE&figitgfinity® 2011) and
SonoVué&/Lumasof? (Lumaso® 2016) respectively. Another key component of the
microbuble coating is a PEGylated emulsifier such as polyoxyethylene (40) stearate (PEG40
stearate; for exampl€ilroy et al. (2014) or the most often used2-distearoydsnglycero3-
phosphoethanolamirg-carboxy (polyethyleneglycol) DPSPEPEG2000; for exame Belcik

et al.(2017), which is added to inhibit coalescence and to increase Ynohalf-life (Ferrara,

et al. 2009) In general two methods are used to produce custane microbubbles:
mechanical agitation (for exampho et al.(2018) or probe sonication (for exampkelcik et

al. (2015). Both these methods produce a population ofabigbbles that is polydisperse in
size. Monodispersed microbubbles produced by microfluidics have recently been developed,
and are starting to gaattention for preclinical therapeutic studies. Dixon et &2019)usel
monodisperse microbubbles to treat ischemic stroke.

Various therapeutic applications have inspired the development of novel cavitation nuclei,
which is discussed in depth in the companion review by Stride (@0419) To improve drug
delivery, therapeutics can be eitheramministered with or loaded onto the microb@sblOne
strategy for loading is to create microbubbles stabilized by -doatpining polymeric
nanoparticles around a gas c{Baipstad, et al. 2017Another strategy is to attach therapeutic
molecules or liposomes to the outside of microbubbles, for example by-aéwadim coupling
(Dewitte, et al. 2015, McEwan, et al. 2016, Nesbhitt, et al. 2B&)ogenic liposomes can be
loaded with different therapeutics or gases aawkhbeen studied for vascular drug delivery
(Sutton, et al. 2014}reatment of tumor&hoi, et al. 2014)and sonothrombolysi{&hekhar,
et al. 2017) ACT® combines Sonazofdmicrobubbles with droplets that can be loaded with
therapeutics for treatment of tumafisotopoulis, et al. 2017)The a@tionic microbubbles

utilized in the treatment sections of this reviesre used mostly for vascular drug delivery,
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with genetic material loaded ohet microbubble surface by chargeupling (for exampl€ao

et al.(2015). Besides phospholipids and naadicles, microbubbles can also be coated with
denatured proteins such as albumin. Opfi¥q@ptisor™ 2012)is a commercially available

and clinically approved ultrasound contrast agent that is coated with human albumin and used
in studies on treatment of ndmain tumorgXiao, et al. 2019)BBB opening(Kovacs, et al.

2017b, Payne, et al. 201 8nd immunotherapiMaria, et al. 2015)Nanasized particlesited

in this reviewhave been used &avitation nuclei for treatment of tumossch asanodroplets

(for example Cao et al(2018) and nanocupgMyers, et al. 2016)for BBB opening

(nanodroplets, Wu et g2018), and for sonobactericide (hanodroplésio et al(2017a).

BUBBLE-CELL INTERACTION
Physics

The physics of the interaction between bubbles or droplets and cells are described as these
are the main cavitation nuclei used for drug delivery and therapy.
Physics of MicrobubbletCell Interaction

Being filled with gas and/arapormakes bubbles highly responsive to changes in pressure
and hence exposure to ultrasound can cause rapid and dramagiescimetineir volume. These
volume changes in turn give rise to an array of mechanical, theanththemical phenomena
WKDW FDQ VLJQLILFDQWO\ LQIOXHQFH WKH EXEEOHVY LPPFL
effects. For the sake of simplicity, theseepbmena will be discussed in the context of a single
bubble. It is important to note, however, that biological effects are typically produced by a
population of bubbles and the influence of inter bubble interactions should not be neglected.

a. Mechanical #ects

A bubble in a liquid is subject to multiple competing influences: the driving pressure of the

imposed ultrasound field, the hydrostatic pressure imposed by the surrounding liquid, the
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pressure of the gas and/or vapor inside the bubble, surfacenems the influence of any
coating material, the inertia of the surrounding fluid, and damping due to the viscosity of the
surrounding fluid and/or coating, thermal conduction, and/or acoustic radiation.

The motion of the bubble is primarily determinedtbg competition between the liquid
inertia and the internal gas pressure. This competition can be chasattbyi using the
RayleighPlessetequation for bubble dynamics to compare the relative contributions of the

terms describing inertia and pressure to the acceleration of the bubb{Elyrall 1975a)

47 F@év—AE &GL +(E2(4 (Eq.1)

whereR is the time dependent bhble radius with initial valu®,, Lais the pressure of the gas
inside the bubblely is the combined hydrostatic and time varying pressure in the licyisd,
the surface tension at the gas liginterface, andéxis the liquid density.

Flynn (1975b, ajdentified two scenarios: if the pressure factor (PF) is dominant when the
bubble approaches its minimum size, then the bubble will undergo sustained volume
oscillations. If the inertia tem is dominant (IF), then the bubble will undergo inertial collapse,
similar to an empty cavity, after which it may rebound or it may disintegrate. Which of these
scenarios occurs is dependent upon the bubble expansiorRsali®, and hence the bubble
size and the amplitude and frequency of the applied ultrasound field.

Both inertial and nonertial bubble oscillations can give rise to multiple phenomena that
LPSDFW WKH EXEEOHYVY LPPHGLDWH HQYLURQPHQW DQG
include:

(i) Direct impingementteven at moderate amplitudes of oscillation, the acceleration of the

bubble wall may be sufficient to impose significant forces upon nearby surfaces, easily
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deforming fragile structures such as a biological cell memb(aaasVamel, et al. 2006, Kudo
2017)or blood vessel wallgChen, et al. 2011)

(if) Ballistic motion +in addition to oscillating, the bubble may undergo translation as a
result of the pressure gradient in the fluid generated by a propagating ultrasound wave (primary
radiation force). Dueottheir high compressibility, bubbles may travel at significant velocities,
sufficient topush them toward targets for improved local deposition of a (@agton, et al.
1999)or penetrate biological tissy€askey, et al. 2009, Bader, et al. 2015, Acconcia, et al.
2016).

(iif) Microstreaming zwhen a structure oscillates in a viscous fluid there wik ensfer
of momentum due to interfacial friction. Any asymmetry in the oscillation will result in a net
motion of that fluid in the immediate vicinity of the structure known as microstreaiiioig
and Nyborg 1956)This motion will in turn impose shear stresses upon any nearby surfaces as
well as increasing convection within the fluidlie tothe inherently notinear nature of bubble
oscillations (equation 1), both namertial and inertial cavitation can produce significant
microstreaming, resulting in fluid velocities on the order airfi/s(Pereno and Stride 2018)

If the bubble is close to a surface then it will also exhibit-syeherical oscillations which
increases the asymmetry and hence the microstreaming even f(xjleorg 1958,
Marmottant and Hilgenfeldt 2003)

(iv) Microjetting +another phenomenon associated with-spherical bubble oscillations
near a surface is the generation of a liquid jet during bubble collapse. If there is sufficient
asymmetry in the acceleration of the fluid on eigide of the collapsing bubble, then the more
rapidly moving fluid may deform the bubble into a toroidal shape causing a high velocity jet
to be emitted on the opposite side. Microjetting has been shown to be capable of producing
pitting even in highly raBent materials such as ste@audé and Ellis 1961, Benjamin and

Ellis 1966) However, as both the direction and velpdi the jet are determined by the elastic
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properties of the nearby surface, its effects in biological tissue are more difficult to predict
(Kudo and Kinosha 2014) Nevertheless, as shown by Chen e(2011) in many cases a
bubble will be sufficiently confined that microjetting will impact surrounding structures
regardless of jet direction.

(v) Shockwaveszan inertially collapsing cavity that results in supersonic bubble wall
velocities creates a significant discontinuity in the pressure in the surrounding liquid leading
to the emission of a shockwave, which may impose significant stresses on nearby structures

(vi) Secondary radiation forceeat smaller amplitudes of oscillation a bubble will also
generate a pressure wave in the surrounding fluid. If the bubble is adjacent to a surface,
interaction between this wave and its reflection from the surface leageéssure gradient in
the liquid and a secondary radiation force on the bubble. As with microjetting, the elastic
properties of the boundary will determine the phase difference between the radiated and
reflected waves and hence whether the bubbles roexads or away from the surface. Motion
towards the surface may amplify the effects of({ii),, and (vi).

b. Thermal effects

As describedabove, an oscillating microbubble will reradiate energy from the incident
ultrasound field in the form of a spheal pressure wave. In addition, the nonlinear character
of the microbubble oscillations will lead to energy being reradiated over a range of frequencies.
At moderate driving pressures the bubble spectrum will contain integer multiples (harmonics)
of the diving frequency; and at higher pressures also fractional components (sub and
ultraharmonics). In biological tissue, absorption of ultrasound increases with frequency and
this nonlinear behavior thus also increases the rate of héatilggnfeldt, et al. 2000, Holt
and Roy 2001)Bubbles will also dissipate energy as a result of viscous friction in the liquid
and thermal conduction from the gas core, the temperature of which increases during

compression. Which mechanism is dominant depends on thefdize bubble, the driving
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conditions and the viscosity of the mediurhermal damping is however typically negligible
in biomedical applications of ultrasound as the time constant associated with heat transfer is
much longethanthe period of the microlinble oscillationgProsperetti 1977)

c. Chemical effects

The temperature rise produced in the surrounding tissue will be negligible compared with
that occurring inside the bubble, especially during inertial collapse when it may reach several
thousandKelvin (Flint and Suslick 1991)The gas pressure similarly increases significantly.
While only sustained for a very brief period, these extreme conditions can produce highly
reactive chemical species, in peutar reactive oxygen species (ROS), as wethagmission
of electromagnetic radiation (sonoluminescence). ROS have been shown to play a significant
role in multiple biological process@a/interbourn 2008and both ROS angbnoluminesence

may affect drug activityRosenthal, et al. 2004, Tramdtham, et al. 2009, Beguin, et al. 2019)

Physics of Poplets +Cell Interaction

Droplets consist ofraencapsulated quantity ofvalatile liquid, such agerfluorobutane
(boiling point-1.7 °C) or perfluoropentane (boiling point 29 °C), which is in a superheated
state at body taperature Superheated stateeans that although thelatile liquids have a
boiling point below 37 °C, these dropletsmainin the liquid phase and do not show
spontaneousaporizatiomafter injectionVaporizationcan be achieveithisteadoy exposure to
ultrasound of significant amplitudeia a processknown asacoustic droplet vaporization
(ADV) (Kripfgans, et al. 2000)Before vapdeation, the droplets are typically ooeder of
magnitude smaller than the emerging bubbles, and the perfluorocarbon is inert and
biocompatible (Biro and Blais 1987) These properties enable a range of therapeutic
possibilities (Sheeran and Dayton 2012, LBanks, et al. 2019)For example, unlike

microbubbles, small droplets may extravasate from the leaky vessels into tumodtissoe
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theenhanced permeability and retention (EBR@ct(Long, et al. 1978, Lammers, et al.12)
Maeda 2012)and then be turned into lbbies by ADV(Rapoport, et al. 2009, Kopechek, et
al. 2013) Loading the droplets with drug enablelcal delivery (Rapoport, et al. 2009y
way of ADV. The mechanism behind this is that the emerging bubbles give rise to similar
radiation forces and microstreaming as described in the physite aficrobubble tcell
interaction abovelt should be noted that oxygen is taken up during bubble growth
(Radhakrishnan, et al. 201&Yhich could lead to hypoxia.

The physics of the dropletcell interaction is largely governdyy the ADV. In general, it
has been observed that ADV is promoted by the following factarge peak negative
pressurs (Kripfgans, et al. 200Qusually obtained bgtrong focing of the generated beam,
high frequency of the emitted wave, and a relatively long distance between the transducer and
the droplet. Another observation that has bemmewith micrometersized dropletss that
vaporization often starts at a welkfinednucleation spot near the side of the droplet where the
acoustic wave impingg$hpak, et al. 2014hese facts can be explained by considering the
two mechanisms that play a role in achieving a large peak negative pressure inside the droplet:
acoustic focusing and nonlinear ultrasound propagéB8bpak, et al. 2016)n the following,
lengths and sizes are related to the wavelength, i.e. the distameked by a wave in one

oscillation (e.g., a 1 MHz ultrasound wave that is traveling in water with a wave, speéd

5944
sr2x

1500 m/s haawavelengthw (m), of —S L L r&rsw.e.1.5 mm).

a. Acoustic focusing
Because the speed of sound in perfluarbonliquidsis significantly lower than in water
or tissue, refraction of the incident wave will occur at the interface between these fluids, and
the spherical shape of the droplet will give rise to focuslimg assessment of thigcusing
effect s not straightforward because the traditional way of describing these phenomena with

rays that propagate along straight lines (the ray approach) only holds for objects that are much



278 larger than the applied wavelength. In the current case, the frequeadymtal ultrasound

279 wave used for insonification is in the order &5 MHz, yielding wavelengths in the order of

280 1500 £300 pm, while a droplet will be smaller by&orders of magnitude. Beside thising

281 the ray approachhe lower speed of sound ieffluorocarbon would yield a focal spot near
282 the backside of the droplet, which is in contradiction to observations. The correct way to treat
283 the focusing effect is to solve the full diffraction problem by decomposing the incident wave,
284 the wave reflectethy the droplet, and the wave transmitted into the droplet into a series of
285 spherical waves. For each spherical wave, the spherical reflection and transmission coefficients
286 can be derived. Superposition of all the spherical waves yields the pressur¢hiasidaplet.

287 Nevertheless, when this approach is only applied to an incident wave with the frequency that
288 is emitted by the transducer, this wéhad neither tdhe right nucleation spot nor to sufficient

289 negative pressure for vaporizati?vanoscale drdpts may be too small to make effective use
290 of the focusing mechanism and ADV is therefore less dependent on the frequency.

291

292  b. Nonlinear ultrasound propagation

293 High pressureamplitudes high frequenies and long propagation distarscall promote

294 nonlinear popagation of an acoustic wayelamilton and Blackstock 2008)n the time

295 domain, nonlinear progation manifests itsedsan increasing deformation of the shape of the
296 ultrasound wavevith distanceraveled In the frequency domaithis translates to increasing

297 harmonic contenti.e. frequenesthataremultiples of thedriving frequency. The totancident

298 acoustic pressuré: P at the position of a nanodroplet can therefore be written as

299 LR L Alg=..."9fFE 644 (Eq.2)

300 wherewhich nis the number of a harmonic;, and 64 are the amplitude and phase of this
301 harmonic, andf is the angular frequency of the emitted wave. The wavelength of a harmonic

302 wave is a fraction of the emitted wavelength.
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The above effects areth important in case of AD¥nd should therefore be combined.
This implies that first the amplitudes and phadeth® incident nonlinear ultrasound wave at
the droplet location should be computed. Next, for each harmonic, the diffraction problem
should be solved in terms of spherical harmonics. Adding the diffracted waves inside the
droplet with the proper amplitudend phase will then yield the total pressure in the droplet.
Figure 1 shows that the combined effects of nonlinear propagation and diffraction can cause a
dramatic amplification of the peak negative pressure imtheometersizeddroplet, sufficient
for triggering droplevaporization(Shpak, et al. 2014Moreover, the location of the neye
pressure peak also agrees with the observed nucleation spot.

After vaporization has started, the growth of the emerging bubble is limited by inertia and
heat transfer. Itheabsence of the heat transfer limitatithreinertia of the fluid that surtands
the bubble limits the rate bubble growthwhich is linearly proportional to time and inversely
proportional to the square root of the density of the surrounding fluid. When inertia is
neglected, thermal diffusion is the limiting factor in the tpsoms of heat to drive the
endothermic vaporization process of perfluorocarbon, causing the radius of the bubble to
increase with the square root of time. In reality, both processes occur simultaneously, where
the inertia effect is dominant at the earlyggtand the diffusion effect is dominant at the later
stage of bubble growtfhe final size that is reached by a bubble depends on the time that a
bubble can expand, i.e. on the duration of the negative cycle of the insonifying pressure wave.
It is therefoe expected that lower insonification frequencies give rise to larger maximum
bubble size. Thus, irrespective of their influence on triggering ADV, lower frequencies would
lead to more violent inertial cavitation effects and cause more biological danmge, a
experimentally observed for droplets with a radius in the order of 1q@Buargess and Porter

2019)
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Biological mechanisms and bioeffects of ultrasoundctivated cavitation nuclei

The biologicalphenomenaf sonoporationi(e. membrane pore formation), stimulated
endocytosis, and opening of cedll contacts and théioeffecs of intracellular calcium
transients, reactive oxygen species generation, cell membrane potential change, and
cytoskeleton changes have bedsservedor several yeargSutton, et al. 2013, Kooiman, et
al. 2014, Lentacker, et al. 2014, Qin, et al. 2018wever,other bioeffecs induced by
ultrasoundactivated cavitation nuclei have recently been discavéieese include membrane
blebbing asarecovery mechanism for reversible sonoporaflmsth for ultrasoundctivated
microbubbles(Leow, et al. 2015pand upon ADV(QIn, et al. 20183) extracellular vesicle
formation(Yuana, et al. 2017)suppression of efflux transportersycoprotein(Cho, et al.
2016, Aryal, et al. 2017and BBB(Blood Brain BarrierfransportergenegMcMahon, et al.
2018) At the same time, more insight has been gained iotiigen of thebioeffecs, largely
through the use of live dahicroscopy. For sonoporation, real time membrane pore opening
and closure dynamics were revealed with pores <3®gkosing within 1 min while pores
>100 pnt did not resea(Hu, et al. 2013as well as immediate rupture of filamentary actin at
the pore locatiorfChen, et al. 2014and correlation of intracellular reactive oxygen species
levels with the degree of sonoporati@ne, et al2018) Realtime sonoporation and opening
of cell-cell contacts in the same endothelial cebsbeen demonstrated as well for a single
example(Helfield, et al. 2016)The applied acoustic pressure was shown to deteumpiake
of model drugs via sonoporation or endocytosis in another giDeyCock, et al. 2015)
Electron microscopy revealed formation of transient membrane disruptions and permanent
membrane structures.e. caveolar endocytic vesicles, upon ultrasound and microbubble
treatmen{Zeghimi, et al. 2015A study by Fekri et a{2016)revealed thatrthanced clathrin
mediated endocytosis and flyxhase endocytosis occur through distinct signaling

mechanisms upon ultrasound and microbubble treatment. The majority dbitheféecs have



353 been observed im vitro modelsusing largely norendothelial ckks and may therefore not be

354 directlyrelevant tan vivotissue whereintravasculamicron-sizedcavitation nuclewill only

355 have contact with endothelial cells and circulating blood céMs the other hand, the

356 mechanistic studies by Belcik et 015, 2017and Yu et al(2017)do show translation from

357 invitro toin vivo. In these studies]tutasoundactivated microbubbles were shown to induce a
358 sheardependent increase intiavascular adenosine triphosphate (ATP) from both endothelial
359 cells and erythrocytesan increase in intramuscular nitric oxigagd downstream signaling

360 through both nitric oxide and prostaglandins which resulted in augmentation of muscle blood

361 flow. Ultrasound settings were similar, namely 1.3 MHz, M| 1.3 for Belcik éR@l5, 2017)

362 and 1 MHz, MI 1.5 for Yu et al2017) with Ml defined as/ + L%WhereP_ is the peak

363 negative pressure of the ultrasoumave (in MPa) anfithe center frequency of the ultrasound
364 wave (in MHz).

365 Whether or not there i direct relatioship between the type of microbubble oscillation
366 andspecificbioeffecs remains to be elucidated, although more insight has been gameghthr
367 ultra-high-speed imaging of the microbubble behavior in conjunction with live cell
368 microscopy.Forexample there seems to kemicrobubble excursion threshold above which
369 sonoporation occurgHelfield, et al. 2016) Van Rooij et al.(2016) further siowed that
370 displacement of targeted microbubbles enhanced reversible sonoporation and preserved cell
371 viability whilst microbubbleghat did not displacevere identified ashe main contributos to

372 cell death

373 All of the dorementiond biological observaions, mechanismsand effecs relate to
374 eukaryotic cellsStudy of he biological effect®f cavitationon for examplebacteriais in its

375 infancy, butstudiessuggesthatsonoporation can be achieved in Gramacteria with dextran
376 uptake and geneansfection bieg reported inFusobacterium nucleatuifHan, et al. 2007)

377 More recent studies have investigated the effect of microbubbles and ultrasogetieon
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expressior(Li, et al. 2015, Dong, et al. 2017, Zhou, et al. 20I8E findings are conflicting
becausealthough thg all show a reduction inexpression ofgenes involved in biofilm
formation and resistance to antibioti@s) increase inexpression ofgenes involved with
dispersion and detachment of biofilm&s alsofound (Dong, et al. 2017)This cavitatiorn

medided bioeffecheeds further investigation.

Modelling Microbubble *cell +drug interaction

Whilst there have been significant efforts to model the dynamics of ultrasound driven
microbubbles(Faez, et al. 2013, Dollet, et al. 201%ss attention has been paid to the
interactions between microbubbles and cells or their impact upon drug transport. Currently
thereare no models that describe the interactions between microbubbles, cells, and drug
molecules. Several models have been proposed for the microbttaak interaction in
sonoporation focusing on different aspects: the cell expansion and microbubbleggtyvel
(Guo, et al. 2017b)Ythe shear stress exerted on the cell membjahe2002, Doinikov and
Bouakaz 2010, Forbes and O'Brien 2012, Yu and Chen 2014, Cowley and McGinty 2019)
microstreaming@Yu and Chen 2014¥hear stress exerted on the cell memhraoembination
with microstreamindLi, et al. 2014) or other flow phenomen@u, et al. 2015, Rowlatt and
Lind 2017)generated by an oscillating microbubble. In contrast to the other models, Man et al.
(2019) proposethat the microbubblgenerated shear stress does not induce pore formation,
butthat this is instead due toicrobubble fusion wit the membrane and subsequa®X OO RXW’
of cell membrane lipid molecudy the oscillating microbubble. Models for pore formation
(for example Koshiyama and Wadad011) and resealingZhang, et al. 2019)n cell
membranes have also been developed, but thegelsneglect the mechanism by which the
pore is creged. There is just one sonoporation dynamics model, developed ley &#5{2012)

that relates the uptake of the model drug propidium iodide (PI) to the size of the created
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membrane pore and the pore resealing time for a single cellimwtno setting. Thenodel

describes the intracellular fluorescence intensity of Pl as a function ofR{theyy:
((PL U@&%HA®ksF A Soa (Eq.3)

where . is the coefficient that relates the amount of Pl molecules to the fluorescence intensity
of PI-DNA and PI-RNA, D is the diffusion coefficient of PICo is the extracellular PI
concentrationro is the initial radius of the pore,is the pore resealing coefficient, ants
WLPH 7KH FRHIILFLHQW . LV GHWHUPLQHG E\gWystem,VHQVLW
and if unknown the equation can still be used because it is the pore size coeffiBi€Bt;&,

that determines the initial slope of the Pl uptake pattern and is the scaling factor for the
exponential increase. A cell with a large pore will @avsteep initial slope of Pl uptake and

the maximum P1 intensity quickly reaches the plateau v&ldienitation of this model is that
equation 3 is based on tvddmensional free diffusion models, which holds foffNA but not

for PLDNA because this isonfined to the nucleu3he model isSndependent of cell typas

Fan et al. have demonstrated agreement with experimentakiesotith kidney(Fan, et al.
2012)and endothelial cellg=an, et al. 2013)Other researchers have also used this model for
endothelial cell stdies and also classified the distribution of both the pore size and pore
resealing coefficients using Principal Component Analysis to determine whether cells were
reversibly or irreversibly sonoporated. In the context of blood brain b&B&#8) opening,
Hosseinkhah et a{2015)have modeled the microbubkdenerated shear and circumferential
wall stress for 5 pm microvessels upon microbubble oscillation at a firemhanical index

(MI) of 0.134 for a range of frequencies (0.5, 1, and 1.5 MHz). The wall stresses we
dependent upomicrobubble size (range investigatedt28 um in diameter) andltrasound
frequency. Wiedemair et af2017) have also modelled the wall shear strgeserated by
microbubble (2 um diameter) destruction at 3 Mblzlarger microvessels (200 pdametey.

The presence of red blood cellasincluded in the mdel and vasfound to cause confinement
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of pressure and shear gradients to the vicinity of theamitble.Advances in methods for
imaging microbubbleell interactions will facilitate the development of more sophisticated

mechanistic models.

TREATMENT OF TUMORS (NON-BRAIN)

The structure of tumor tissue varies significantly from that of hedidisyie which has
important implications for its treatment. To support the continuous expansion of neoplastic
cells, the formation of new vessels (i.e. angiogenesis) is néaalgtila and de Sauvage 2013)

As such, a rapidigeveloped, poorkprganized vasculature with enlarged vascular openings
arises. In between these vessels, large avascular regions exist, which are characterized by a
dense extraadlular matrix, high interstitial pressure, low pH, and hypoxia. Moreover, a local
immunosuppressive environment is formed, preventing posaiitidumor activity by the

immune system.

Notwithstanding the growing knowledge of the pathophysiology of tumoeatment
remains challenging. Chemotherapeutic drugs are typically administered to abolish the rapidly
dividing cancer cells. Yet, their cytotoxic effects are not limited to cancer cells, causing dose
limiting off-target effects. To overcome this hurdibemotherapeutics are often encapsulated
in nanesized carriers, i.e. nanoparticles, that are designed to specifidéliye through the
large openings of tumor vasculature, while being excluded from healthyligsoemal blood
vesselgLammers, et al. 2012, Maeda 201Respite being highly promising in podinical
studies, drugontaining nanoparticles have shown limited clinical success due to the vast
heterogeneity in tumor vasculatu(Barenholz 2012, Lammers, et al. 2012, Wang, et al.
2015d) In addition, dug penetration into the deeper layers of the tumor can be constrained

due to high interstitial pressure and a dense extracellular matrix in the tumor. Furthermore,
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acidic and hypoxic regions limit the efficacy of radiatiand chemotheraplyased treatmés
due to biochemical effecttMehta, et al. 2012, Mckan, et al. 2015, Fix, et al. 2018)
Ultrasoundtriggered microbubbles are able to altee tumor environment locally, thereby
improving drug delivery to tumors. These alterations are schematically represehigaré
2 and include: improving vascular permeability, modifying the tumor perfusion, reducing local
hypoxia, and overcoming thedh interstitial pressure.

Several studies have fourtbat ultrasoundiriven microbubblesmproved delivery of
chemotherapeutic agents in tumors, which resulted in increasetraot effectfWang, et
al. 2015d, Snipstad, et al. 2017, Zhang, et al. 2M8jeover, several gene products could be
effectively delivered to tumor cellsia ultrasounedriven microbubbles resulting in a
downreguléion of tumorspecific pathways and an inhibition in tumor groiopechek, et
al. 2015, Zhou, et al. 2015Theek et al(2016) furthermore confirmed that nanoparticle
accumulation can be achieved in tumors with low EPR effect. Drug transport and distribution
through the dense tumor matrix and into regions with eldvaterstitial pressure is often the
limiting factor in peripheral tumorsAs a result,several reports have indicated that drug
penetration into the tumor remained limited after sonoporation, which may impede the
eradication of the entire tumor tiss{iigggen, et al. 2014, Wang, et al. 2015d, Wei, et al. 2019)
Alternatively, microbubble cavitation can affect tumor perfusion, as vasoconstriction and even
temporary vascular shdiown havebeen reporteéx vivo(Keravnou, et al. 201@&ndin vivo
(Hu, et al. 2012, Goertz 2015, Yemane, et al. 20TBese effects were seen at higher
ultrasound intensities (>1.5 MPa) and are believed to result from inertial cavitation leading to
violent microbubble collapses. As blood supply is needed to maintain tumor growth, vascular
disruption might érm a different approach to cease tumor developnwiotobubbleinduced
microvascular damage was able to complement the direct effects of chemotherapeutics and

antivascular drugs by secondary ischemmeadiated cytotoxicity, which led to tumor growth
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inhibition (Wang, et al. 2015a, Ho, et al. 2018, Yang, et al. 2018kpddition, a synergistic

effect between radiation therapy and ultrasestthulated microbubble treatment was
observed, as radiation therapy also induces secondary cell death by endothelial apoptosis and
vascular damagg@.ai, et al. 2016, Daecher, at 2017) Nevertheless, several\aerse effects

have been reported due to excessive vascular disruption, including hemorrhage, tissue necrosis,
and the formation of thromi§Goertz 2015, Wang, et &@015d, Snipstad, et al. 2017)

Furthermore, oxygenontaining microbubbles can provide a local oxygen supply to
hypoxic areas, rendering oxygdependent treatments more effective. This is of intd¢ogs
sonodynamic therapy, which is based on the production of cytotoxic reactive oxygen species
(ROS) by a sonosensitizing agent upon activation by ultrasound in the presence of oxygen
(McEwan, et al. 2015, McEwan, et al. 2016, Nesbitt, et al. 2@&8)ltrasound can be used to
stimulate the release aixygen from oxygestarrying microbubbles while simultaneously
activating a sonosensitizer, this approach has shown to be particularly useful for the treatment
of hypoxic tumor typegMcEwan, et al. 2015, Nesbitt, et al. 201&dditionally, low
oxygenation promotes resistance to radiotherapy, which can be circumvented by a momentary
supply of oxygen. Based on this notion, oxyganrying microbubbles were used to improve
the outcomef radiotherapy in a rat fiborosarcoma mof(fak, et al. 2018)

Finally, ultrasounehctivded microbubbles promote convection and induce acoustic
radiation forces. As such, closer contact with the tumor endothelial and an extended contact
time can be obtaine(Kilroy, et al. 2014) Furthermore, these forces may counteract the
elevated interstitial pressure present in tunm{&@ggen, et al. 2014, LeBarks, et al. 2016,

Xiao, et al. 2019)

Apart from their ability to improve the tumor uptake, microbubbles can be used as

ultrasoundresponsive drug carriers teduce the oftarget effects of chemotherapeutics. By

loading the drugs or drugpntaining nanoparticles directly in or onto the microbubbles, a



503 spatial and temporal control of drug release can be obtained, thereby reducing exposure to other
504 parts of thdbody(Yan, et al. 2013, Snipstad, et al. 20Mbdreover, several studies have shown

505 improved anticancer effects from treatment with dragupled microbubbles, compared to a
506 co-administration approac(Burke, et al. 2014, Snipstad, et al. 201A&dditionally, tumor

507 neovasculaturexpresss specific surfacereceptorsghat can be targetl by specific ligands.

508 Adding such targeting moieties to the surface of (doagled) microbubbles improves site

509 targeted delivery and has shown to potentiate this effect fuiBaey, et al. 2016, Xing, et al.

510 2016, Luo, et al2017)

511 Phaseshifting droplets and gastabilizing solid agentse(g. nanocups) have the unique

512 ability to benefit from both EPRPHGLDWHG DFFXPXODWLRQ LQ WKH pOF
513 vasculature due to their small sizes, as well as from ultrasodndedperneabilization of the

514 tissue structur€Zhou 2015, Myers, et al. 2016, Liu, et al. 2018b, Zhang, et al. 28&8§ral

515 research groups have reportednmor regression after treatment with acousticatifive

516 droplets(Gupta, et al. 2015, van Wamel, et al. 2016, Cao, et al. 2018, Liu, e18h)20 gas

517 stabilizing solid particleéMin, et al. 2016, Myers, et al. 20L& different approach to the use

518 of droplets for tumor treatment, is Acoustic Cluster Therapy (BCWhich is based on

519 microbubbledroplet clusters that upon ultrasound exposure, undergo a phase shift to create
520 large bubbles that can transiently block capillag&sntum, et al. 20)5While the mechanism

521 behind the technique is not yet fully understood, studies have shown improved delivery and
522 efficacy of paclitaxel and Abraxafién xenograft prostate tumor moddisan Wamel, et al.

523 2016, Kotopoulis, et al. 20L7Another use of droplets for tumor treatmenenhanced high

524 intensity focused ultrasound (HIFediated heating otitnors(Kopechek, et al. 2014)

525 Although microbubbléaseddrug delivery to solidumorsshows great promise, it also

526 faces important challenges. The ultrasound parameters usedvivo studies highly vary

527 between research groups and no consensus was found on the oscillation regime that is believed
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to be responsible for the observéidets(Wang, et al. 2015d, Snipstad, et al. 20M0Qreover,
longer ultrasound pulses and increased exposure times are usually applied in compiarison to
vitro reports(Roovers, et al. 2019cJ his could promote additional effects such as microbubble
clustering and microbubble translation, which could cause local damage to the surrounding
tissue as wel{Roovers, et al. 2019aJo elucidate these effects further, fundameintaitro
research remains important. Therefore, navelitro models thamore accuratelynimic the
complexity of thein vivo tumor environmenare currently being explored. Park et(2016)
engineered a perfusable vesspla-chip system and reported successful doxorubicin delivery
to the endothelial cells lining this microvascular network. While such microfluidic chips could
be extemely useful to study the interactions of microbubbles with the endothelial cell barrier,
special care to the material of the chambers should be taken to avoid ultrasound reflections and
standing wave¢Beekers, et al. 2018RAlternatively, 3D tumor spheroids have been used to
study the effects of ultrasound and microbubddsisted drug delivery on penetration and
therapeutic effect in a multicellular tummiodel(Roovers, et al. 2019bApart from expanding

the knowledg on microbubblgissue interactions in detailed parametric stustiestro, it will

be crucial to obtain improved control over the microbubble behaviaivo, and link this to

the therapeutic effects. To this end, passive cavitation detection (P@Dphitmr microbubble
cavitation behavior in redlme is currently under development, and could provide better
insights in the futuréChoi, et al. 2014, Graham, et al. 2014, Haworth, et al. 2E&Hdrts are
beingcommitted toconstructing custorbuilt delivery systems, which can be equipped with
multiple transducers allowing drug deliveguided by ultrasound imaging and/or PCD

(Escoffre, et al. 2013, Choi, et al. 2014, Wang, et al. 2015c, Paris, et al. 2018)

Clinical studies

Pancreatic cancer
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The safety and therapeutic potential of improved chemotherapeutic drug delivery using
microbubbles andltrasound was first investigated for the treatment of inoperable pancreatic
ductal adenocarcinoma at Haukeland University Hospital, Nofiatopoulis, et al. 2013,
Dimcevski et al. 2016) In this clinical trial, gemcitabine was administrated by intravenous
injection over 30 min. During the last 10 min of chemotherapy, an abdominal echography was
performed to locate the positiof pancreatic tumor. At the end of chemotherapy, 0.5 mL of
SonoVué& microbubbles followed by 5 mL saline were intravenously injected every 3.5 min
to ensure their presence throughout the whole sonoporation treatment. Pancreatic tumors were
exposed to utasound (1.9 MHz, M1 0.2, 1% DC) using a 4C curvilinear probe (GE Healthcare)
connected to an LOGIQ 9 clinical ultrasound scanner. The cumulative ultrasound exposure
was only 18.9 s. All clinical data showed that microbulshétliated gemcitabine deliverydd
not induce any serious adverse events in comparison to chemotherapy alone. At the same time,
tumor size and development were characterized according to the Response Evaluation Criteria
in Solid Tumors (RECIST) criteria. In additidBastern Cooperativ@ncology GroupECOQG
performance status was used to monitor the therapeutic efficacy of the micreinguolideed
gemcitabine delivery. All ten patients tolerated an increased number of gemcitabine cycles
compared tdreatmenwith chemotherapy alorfeom historical control48.3 r6vs13.8 r5.6
cycles;p < 0.008), thus reflecting an improved physical state. After 12 treatment cycles, one
SDWLHQWTV W XfBldQRdéceaSR B Hu@orsize. This patient was excluded from this
clinical trial to be treated with radiotherapy and then with pancreatectorfiyelout of ten
patients, the maximum tumor diameter was partially decreased from the first to last therapeutic
treatment. Subsequently, a consolidative radiotherapy or a FOLFIRINOX treatment, a bolus
and infusion of Hluorouracil, leucovorin, irinotecaand oxaliplatin, was offered to them. The
median survival was significantly increased from 8.9 months to 17.6 mgnth<.0001).

Altogether, these results show that the drug delivery using cliniapjpyoved microbubbles,



578 chemotherapeutics, and ultrasa is feasible and compatible with respect to clinical
579 procedures. Nevertheless, the authors did not provide any evidence that the improved
580 therapeutic efficacy of gemcitabine was related to an increase in intratumoral bioavailability
581 of the drug. In adtion, the effects of microbubblassisted ultrasound treatment alone on the
582 tumor growth were not investigated while recent publications describe that according to the
583 ultrasound parameters, such treatment could induce a significant decrease in tumer volu
584 througha reductionin tumor perfusion as described above.

585

586 Hepatic metastases from digestive system

587 A safety study of chemotherapeutic delivery using microbulbsésted ultrasound for the

588 treatment of liver metastases from gastrointestinal tumorspandreatic carcinoma was

589 conducted at Beijing Cancer Hospital, Chi\&ang, et al. 2018)Thirty minutes after

590 intravenous infusion of chemotherapy (for both monotherapy and combination therapy), 1 mL
591 of SonoVué& microbubbles was intravenously administrated which was repaateter five

592 times in 20 min. An ultrasound probe (Glabdominal convex probe; GE Healthcare, USA)
593 was positioned on the tumor lesion which was exposed to ultrasound at different Mis (0.4 to
594 1) in contrast mode using a LogiQ E9 scanner (GE Healthcare). U8& primary aims of this

595 clinical trial were to evaluate the safety of this therapeutic procedure and to explore the largest
596 Ml and ultrasound treatment time which cancer patients can tolerate. According to the clinical
597 safety evaluation, all twelve pants showed no serious adverse events. The authors reported
598 that the microbubble mediatethemotherapy led to fever in two patients. However, there is no
599 clear evidence this related to the microbubble and ultrasound treatment. Indeed, in the absence
600 of direct comparison of these results with a historical group of patients receiving the
601 chemotherapy on its own, one cannot rule out a direct link between the fever and the

602 chemotherapy alone. All the adverse side effects were resolved with symptomatic wedicati
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In addition, the severity of side effects did mairsenwith increases in MI, suggesting that
microbubblemediated chemotherapy is a safe procedure. The secondary aims were to assess
the efficacy of this therapeutic protocol using conteagtanced Cnd MRI. Thus, tumor

size and development were characterized according to the RECIST criteria. Half of the patients
had stable disease and one patient obtained a partial response after the first treatment cycle.
The median progressidree survival was 9Hays. However, making any comparison and
interpretation of results is very difficult because none of the patients were treated with the same
chemotherapeutics, MI, and/or number of treatment cycles. The results of safety and efficacy
evaluations should beompared to patients receiving the chemotherapy on its own in order to
clearly identify the therapeutic benefit obmbining with ultrasoundriven microbubbles

Similar to the pancreatic clinical study, no direct evidence of enhanced therapeutic
bioavaihbility of the chemotherapeutic drug after the treatmemss provided This
investigation is all the more important as the ultrasound and microbubble treatment was applied
30 min after intravenous chemotherapy (for both monotherapy and combination therapy)

independently of drug pharmacokinetics and metabolism.

Ongoing and upcoming clinical trials

Currently two clinical trials are ongoing: (i) Prof. F. Kiessling (RWTH Aachen University,
Germany) proposes to examine whether the exposure of early primast loancer to
microbubbleassisted ultrasound during neoadjuvant chemotherapy results in increased tumor
regression in comparison to ultrasound treatment alone (NCT03385200); (ii) Dr. J. Eisenbrey
(Sidney Kimmel Cancer Center, Thomas Jefferson Univerki§A) is investigating the
therapeutic potential of perflutren protégype A microspheres in combination with

microbubbleassisted ultrasound in radioembolization therapy of liver cancer (NCT03199274).



627 A proof of concept study (NCT03458975) has been séffoumrs Hospital, France for

628 treating norresectable liver metastases. The aim of this trial is to perform a feasibility study
629 with the development of a dedicated ultrasound imaging and delivery probe with a therapy
630 protocol optimized for patients with hdmametastases of colorectal cancer and who are
631 eligible for monoclonal antibodies in combination with chemotherapy. A dedicated 1.5D
632 ultrasound probe has been developed and interconnected to a modified A¥ptaging

633 platform (Supersonic imagine, Aen-Provence, France). The primary objective of the study
634 is to determine the rate of objective response at two months for lesions receiving optimized
635 and targeted delivery of systemic chemotherapy combining bevacizumab and FOLFIRI
636 compared with those tremt with only systemic chemotherapy regimen. The secondary
637 objective is to determine the safety and tolerability of this local approach of optimized
638 intratumoral drug delivery during the three months of follguy by assessing tumor necrosis,
639 tumor vasculaty and pharmacokinetics of bevacizumab aggrofiling cytokineexpression

640 spatially

641
642 IMMUNOTHERAPY

643 Cancer immunotherapy is considered to be one of the most promising strategies to eradicate
644 FDQFHU DV LW PDNHV XVH RI WKHhb SRMMely gtacl ahdRIEZsfroy PP X Q F
645 tumor cells. It is a common name that refers to a variety of strategies that aim to unleash the

646 power of the immune system by either boosting antitumoral immune responses or flagging

647 tumor cells to make them more visibte the immune system. The principle is based on the

648 fact that tumors express specific tumor antigens which are not, or to a much lesser extent,

649 expressed by normal somatic cells and heacdbe used to initiate a canegpecific immune

650 response. In this sgon we aim to give insight into how microbubbles and ultrasound have
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been applied as useful tools to initiate or sustain different types of cancer immunotherapy as
illustrated in Figure 3.

When RalphSteinman(Steinman, et al. 197@)scovered the dendritic cell (DC) in 1973,
its central role in the initiation of immunity madeah attractivetarget to evoke specific
antitumoral immune responses. Indeed, these cells very efficiently capture antigens and present
them to Flymphocytes itmajor histocompatibility complexes (MHCSs), thereby bridging the
innate and adaptive immune system. More Sjpadly, exogenous antigens engulfeid the
endolysosomal pathway are largely presented to *CD4cells via MHC-Il, whereas
endogenous, cytoplasmic proteins are shuttled to NMiH®Ilecules for presentation to CD8
cells. As such, either CD4elper T ceb or CD8 cytotoxic T cell responses are induced. The
understanding of this pivotal role played by DCs formed the basis fébd3€d vaccination,
ZKHUH D SDWLHQWYV '&V é&UWidoth YR@M WiHIB anfyBrG lahtt G
administered as a celar vaccine. D&based therapeutics, however, suffer from a number of
challenges, of which the expensive and lengtkyivoprocedure for antigetoading and
activation of DCs is the most promine(antos and Butterfield 2018)n this regard,
microbubbles have lea investigatedor direct delivery otumor antigens to immune cells
vivo. Bioley et al (2015)showed that intact microbubbles are rapidly phagocytosed by both
murine and human DCs, resulting in rapid and efficient uptake of stotag#ed antigens
without the use ofiltrasound. Subcutaneous injection of microbubbles loaded with the model
antigen ovalbumin (OVA) resulted in the activation of both CRBd CD4 T cells.
Effectively, these cell responses could partially protect vaccinated mice against an OVA
expressing.isteria infection. Dewitte et a(2014)investigated a different approach, making
use of messenger RNA (mMRNA) loaded microbublblasbinedwith ultrasound to transfect
DCs. As sich, they were able to deliver mMRNA encoding both tumor antigens as well as

immunomodulating molecules directly to the cytoplasm of the DCs. As a result, preferential
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presentation of antigen fragments in MH€omplexes was ensured, favoring the inductibn

CD8" cytotoxic T cells. In a therapeutic vaccination study in mice bearing -@xf#kessing
tumors, injection of mMRNAsonoporated DCs caused a pronounced slowdown of tumor growth
and induced complete tumor regression in 30% of the vaccinated animaisstintggy, in
humans, intradermally injected microbubbles have been used as sentinel lymph node detectors
as they can easily drain from peripheral sites to the afferent lymph (®ele=r, et al. 20123,
Sever, et al. 2012b)Since lymph nodes are the primary sites of immune induction, the
interaction of microbubbles with intranodal DCs, could be of high value. To this end, Dewitte
et al. (2015) showed that mRNAoaded microbubbles were able to rapidly and efficiently
migrate to the afferent lymph nodes after intradermal injection in healthydofystunately,

further translation of this concept to @nvivo setting is not straightforway@s it prompts the

use of less accessible large animal modelg.(pigs, dogs)Indeed, conversely to what has
been reported in humans, lymphatic drainage of subcutaneously injected microbubbles is very
limited in the small animal models typically used in preclinical resganate and rats\which

is the result of substantial differee in lymphatic physiology.

Another strategy in cancer immunotherapy is adoptive cell therapy, véxendvo
manipulated immune effector cells, mainly T cells and NK (natural killer) cells, are employed
to generate a robust and selective anticancer iremesponséYee 2018, Hu, et al. 2019)
These strategies have mainly led to successes in hematological malignancies, not only because
of the availability ofselective target antigens, but also because of the accessibility of the
malignant cellgKhalil, et al. 2016, Yee 2018By contrast, in solid tumors, and especially in
brain cancers, inadequate homing of cytotoxic T cells krcHlls to the tumor proved to be
one of the main reasons for the low success rates, making the degree of tumor infiltration an
important factor in disease progno&hilds and Carlsten 2015, Gras Navarro, et al. 2015, Yee

2018) To address this, focused ultrasound and microbubbles have been osda: tumors



701 more accessibletcellular therapiesThefirst demonstration of this concept was provided by
702 Alkins et al.(2013)who used a xenograft HER-expressing breast cancer brain metastasis
703 model to determine whether ultrasound and microbubbles could allow intravenously infused
704 NK cells to cross the bloedrain barrier (BBB). By loading the NK cellsvith

705 superparamagnetic iron oxide (SPIO) nanopatrticles, the accumulation of NK cells in the brain
706 could be tracked and quantifiech MRI. An enhanced accumulation of NK cells was found
707 when the cells were injected immediately prior to BBB disruption.ohtamtly NK cells

708 retained their activity and ultrasound treatment resulted in a sufficient NK to tumor cell ratio
709 to allow effective tumor cell killingAlkins, et al. 2016)In contrast, very few NK cells reached

710 the tumor site when BBB disruption was absent or performed before NK cell infusion.
711 Although it is not known for certawhy timing had such a significant impact on NK
712 extravasation, its likely that the most effective transfer to the tissue occurs at the time of
713 insonification, and that the barrier is most open during this {Maaty, et al. 2012)Possible

714  other explanations include the difference in size of the temporal BBB openings or a possible
715 alternation in the expssion of specific leukocyte adhesion molecules by the BBB disruption,
716 thus facilitating the translocation of NK cellslso for tumors where BBB crossing is not an
717 issue, ultrasound has been used to improve delivery of cellular therapeutics. Sta Miaria et
718 (2015) demonstrated enhanced tumor infiltration of adoptively transferred NK cells after
719 treatment with microbubbles and low dose focused ultrasoundr@hitwas confirmed by

720 Yanget al.(2019a)in a more recent publication where the homing of NK cells was more than
721 doubled aftemicrobubble injection and ultrasound treatment of an ovarian tumor. Despite the
722 enhanced accumulation, however, the authors did not observe an improved therapeutic effect,
723 which might be due to the limited number of treatments that were applied, or the
724  immunosuppressive tumor microenvironment that counteracts the cytotoxic action of the NK

725 cells.
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There is growing interest in exploring the effect of microbubbles and ultrasound on the
tumor microenvironmentas recent work has shown that BBB disruption wiikrobubbles
and ultrasound may induce sterile inflammation. Although a strong inflammatory response may
be detrimental in the case of drug delivery across the BBB, it might be interesting to further
study this inflammatory response in solid tumors asight induce the release of damage
associated molecular patterns (DAMPS) such as-dtemik proteins and inflammatory
cytokines. This could shift the balance towards a more inflammatory microenvironment that
could promote immunotherapeutic approaches.epsnted by Liwet al. (2012)exposure of a
CT26 colon carcinoma xenograft to microbubbles and low pressure pulsed ultrasound
increased cytokine release and triggered lymphocyte infiltration. Similar data have been
reported by Hunget al. (2015) In their study, ultrasound treatment caused a complete shut
down of tumor vasculature followed by the expression of-HIF K\ S Rndubible factor

D PDUNHU RI WXPRU LVFKHPLD DQG WXPRU QEeHdJRVLYV
Similar responses have been reported following thermal and mechanical HIFU treatments of
solid tumors(Unga and Hashida 2014, Silvestrini, et al. 20X }letailed review of ablative
ultrasound therapies is however out of the scope of this review.

At present, the most successful form of immunotherapy is the administration of monoclonal
antibodies to inhibit regulatory immune checkpoints that bloaell action. Examples are
CTLA-4 (cytotoxic T lymphocyteassociated proteid) and PB1 (programmed cell death),
which act as brakes on the immune system. Blocking the effect of these brakes can revive and
support the function of immune effector cel®espite the numerous successes achieved with
checkpoint inhibitors, responses have been quite heterogeneous as the success of checkpoint
inhibition therapy largely depends on the presence of intratumoral effector T\telkser
2017) This motivated Bulner et a2019) to explore the synergy of microbubble and

ultrasound treatment with RDL checkpoint inhibition therapy in mice. Tumors in the
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treatment group that receivéte combination of microbubble and ultrasound treatment with
checkpoint inhibition were significantly smaller than tumors in the monotherapy groups. One
mouse showed complete tumor regression and remained tumor free upon rechallenge,
indicative of an adapte immune response.

Overall, the number of studies that investigate the impact of microbubble and ultrasound
treatment on immunotherapy is limited, making this a rather unexplored research area. It is
obvious that more Hilepth research is warranted toprove our understanding on how

(various types of) immunotherapy might benefit from (various types of) ultrasound treatment.

BLOOD BRAIN BARRIER (BBB) AND BLOOD SPINAL CORD BARRIER (BSCB)
OPENING

The barriers of the central nervous system (CNS), the BBvath Barrier (BBB) and
Blood-Spinal Cord Barrier (BSCB), greatly limdrugbasedtreatnent of CNS disorders.
These barriers help to regulate the specialized CNS environment by limiting the passage of
most therapeutically relevant molecul@ardridge 2005)Although several methodsave
been proposed to circumvent the BBB and BSCB, including chemical disruption and the
development of molecules engineered to capitalize on reeem@diated transport (stalled
Trojan Horse molecules), the use of ultrasound in combination with migbtds(Hynynen,
et al. 2001)pr droplets(Wu, et al. 2018)o transiently modulate these barribes come to the
forefront in recent years due to the targeted nature of this approach and its ability to facilitate
delivery of a wide range of cntly available therapeutic&irst demonstrated in 2001
(Hynynen, et al. 2001)ultrasounemediated BBB opening has been the topic of several
hundred original research articles in the last two decades, and in recent years has made
headlines for grountireaking clinical trials targeting DLQ WXPRUV DQG %O ]KHLPH!

described below in the clinical studies section
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Mechanisms, Bioeffects, and Safety

Ultrasound in combination with microbubblean producepermeability changes in the
BBB via both enhanced paracellular and transcellular tranEploetkov, et al. 2004, Sheikov,
et al. 2006)Reduction and reorganization of tight junction protéBiseikov, et al. 200&nd
upregulation of active transport protein CavedlifDeng, et al. 2012have been reported.
Although the exact physical mechanisms driving these changestknown, there are several
factors that are hypothesized to contribute to these effects, including direct tensile stresses due
to the expansion and contraction of the bubbles in the lumen, as well as shear stresses at the
vessel wall arising from acotis microstreaming. Recent studies have also investigated the
suppression of efflux transporters following ultrasound exposure with microbubbles. A
reduction in Pglycoprotein expressiofiCho, et al. 2016, Aryal, et al. 201dhd BBB
transporter gene expressi{iMcMahon, et al. 2018has been observed by multiple groups.
One study showed that-dtycoprotein expression was suppsed for over 48 h following
treatmentwith ultrasound and microbubblééryal, et al. 2017) However, the degree of
inhibition of efflux transporters as a result of ultrasound with microbubbles may be insufficient
to prevent efflux of some therapeut{€outal, et al. 2018)yand thus this mechanism requires
further study.

Many studies have documented enhanced CNS tumor response following ultrasound and
microbubblemediated delivery of drugs across the BldadnorBarrier in rodent models.
Improved survival has been shown in both prim@&fen, et al. 2010, Aryaet al. 2013and
metastatic tumor mode(Park, et al. 2012, Alkins, et al. 2016)

Beyond simply enhancing drug accumulation in the CNSersé\positive bioeffects of
ultrasound and microbubble induced BBB opening have bsmorted In rodent models of

$O]KHLPHUYV GLVHDVH QXPHURXV SRVLWLYH HIIHFWV KD



801 exogenous therapeutics. These effects include a reduotamyloid S O D T X(Bbrdag, btG

802 al. 2013, Burgess, et al. 2014, Leinenga and Go6tz 2015, Poon, et al. r2&@i&}ion in tau

803 pathology(Pandit, et al. 2019and improvements in spatial memdBurgess, et al. 2014,

804 Leinenga and Gotz 2015)wo-photon microscopy has shown that amyoidSODTXH VL]H L
805 reduced in transgenic mice for up to two weeks post ultrasound and microbubble treatment
806 (Poon, et al. 2018)Opening of the BBB in both transgenic and wige mice has also

807 revealed enhanced neurogendBiargess, et al. 2014, Scarcelli, et al. 2014, Mooney, et al.
808 2016)in the treated tissue.

809 Gene delivery to the CNS using ultrasound and microbubbles is another area that is
810 increasingly being inestigated. ViralAlonso, et al. 203, Wang, et al. 2015@nd nonviral

811 (Mead, et al. 2016G)elivery methods have been investigated. While early studies demonstrated
812 the feasibility of gene delivery using repar genegqfor example Thevenot et.al2012)

813 Alonso et al (2013), there hae been promising results delivering therapeutic genes. In
814 SDUWLFXODU DGYDQFHV KDYH EHHQ PDGH LQ 3DUNLQVRQT
815 have been testedead, et al. 2017, Xhima, et al. 2018nd where long lasting functional

816 improvements have been reported in response to th@vegagd, et al. 2017)t is expected that

817 research into this highly promising techniqui# expand to a range of therapeutic applications.

818 Despite excellent safety profiles in rboman primate studies investigating repeat opening
819 of the BBB(McDannold, et al. 2012, Downs, et al. 201there haveen recent controversy

820 due toreports of a sterile inflammatory response observed {Kmatscs, et al. 2017a, Kovacs,

821 etal. 2017Db, Silburt, et al. 201 Mhe inflammatory response is proportional to the magnitude
822 of BBB opening and is therefore strongly influenced by experimental conditions such as
823 microbubble dose and acoustic settirdgwever, McMahon and Hynyné2017)showed that

824 when clinical microbubble doses are used, and treatment exposures are actively controlled to

825 avoid over treating, the inflammatory response is acute and mild. They note that while chronic
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inflammation isundesirable, acute inflammation may actually contribute to some of the
positive bioeffects that have been observed. For example, the clearanogat following
ultrasound and microbubble treatmesthought to be mediated in part by microglial aation
(Jordao, et al. 2013)These findings reiterate the need for carefully contraliedtment

exposures to select for desired bioeffects.

Cavitation Monitoring and Control

It is generally accepted that the behavior of the microbubbles in the ultrasound field is
predictive, to an extent, of the observed bioeffects. In the seminal stutlye @ssociation
between cavitation and BBB opening, McDannold gt28l06)observed an increase in second
harmonic emissions in cases of successful opening, compared to exposures that lead to no
observable changes in permeability as measured by contrast enhanced MRI. Further, they noted
that successful opening ddibe achieved in the absence of inertial cavitation, wivasalso
reported byamother group(Tung, et al. 2010)These general guidelines have been central to
the development of active treatment controlesnbs that have been developed to dedd
with the common goal of promoting stable bubble oscillations, while avoiding violent bubble
collapse that can lead to tissue damage. These methods are based either on detection of sub or
ultraharmonic(O'Reilly and Hynynen 2012, Tsai, et al. 2016, Bing, et al. 20d&monic
bubble emission@rvanitis, et al. 2012, Sun, et al. 20Dbr)a combination there@Kamimura,
etal. 2019) $Q DSSURDFK EDVHG RQ WKH VXE XOWUDKDUPRQLF |
Hynynen(2012)has been employed in &aclinical testing(Lipsman, et al. 2018, Mainprize,
et al. 2019)

Control methods presented to date have generally been developed using single receiver
elements, which simplifies data processing but does not allow signals to be localized. Focused

receivers are spatially selectibeit can miss offarget events, while planar receivers may



851 (generate false positives based on signals originating outside the treatment volume. The solution
852 to this is to use an array of receivers and passive beamforming methods, combined with phase
853 corredion methods to compensate for the skull b@omes, et al. 2013, 201t6)generate maps

854  of bubble activity. Irthe brain this has been achieved with linear arfapganitis, et al. 2013,

855 Yang, et al. 2019¢)which suffer from poor axial resolution when using passive imaging
856 methods, as well as largeale sparse hemispherical or large aperture receiver E'&elly,

857 et al. 2014, Deng, et al. 2016, Crake, et al. 2018, Jones, et al. 2018, Liu, et al.tRatl8a)

858 optimize spatial resolution for a given frequency. Recently, this has extended beyond just
859 imaging the bubble activity to incorporate réiate, active feedback control based on both the

860 spectral and spatial information obtained from the bubble (Japes, et al. 2018Figure4).

861 Robust control methods building on these works will be essential for widespread adoption of
862 this technology to ensure safe and consistent treatments.

863

864 BSCB opening

865 Despite the similarities between the BBB &B8CB, and the great potential benefit for

866 patients, there has been limited work investigating translation of this technoltiggstanal

867 cord. Opening of the BSCB in rats was first reported by Wachsmuth @08P) and was

868 followed by studies from Webekdrien et al.(2015) Payne et ak2017) DQG 2Y5HLOO\ HW
869 (2018)in rats (Figureés) and from Montero et a{2019)in rabbits, the latter performed through

870 a laminectomy window. @ 2 15 HL O@018presdnt@d the first evidence of a

871 therapeutic benefit in a disease model, showing improved tumor control in a rat model of
872 leptomeningeal metastases.

873 Although promisingthere remains significant work to be done to advance BSCB opening
874 to clinical studies. A more thorough characterization of the bioeffects in the spinal cord and

875 how, if at all, they differ from the brain is necessary to ensure safe translation. Adijitiona
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methods and devices capable of delivering controlled therapy to the spinal cord at clinical scale
are needed. While laminectomy and implantation of an ultrasound {®océero, et al. 2019)

might be an appropriate approach for sdioeal indications, treating multifocal or diffuse
disease will require the ultrasound to be delivered through the intact bone to the narrow spinal
FDQDO )OHWFK@8hay&epragehtdd ant@thod to suppress standing waves in the
human vertebral canal. Combined with devices suited to the spinal geometry, such as that

SUHVHQWHG E\ ;R0ODI)Besthtethtdd WiN help to advance clinical translation

Clinical studies

The feasibility of enhancing BBB permeability in and around brain tumors using ultrasound
and microbubbles has now been demonstrated in two clinical tndlse study conducted at
Assistance Publiqu#iopitaux de Paris in Paris, Framcan unfocused 1 MHz ultrasound
transducer (SonoCloffjilwas surgically placed over the turmesection area and permanently
fixed into the hole in the skull bone. The skin was placed over the transducer and after healing
treatments were conducted by irsey a needle probe through the skin to provide the driving
signal to the transducer. Monthly treatments were then conducted while infusing a
chemotherapeutic agent into the blood stream (carboplatin). The sonication was executed
during infusion of SonoVEP microbubbles. A constant pulsed sonication was applied during
each treatment followed by a contrast enhanced MRI to estimate BBB permeability. The power
was escalated for each monthly treatment until enhancement was detected TrhigRiudy
demonstrated feasibility and saf¢Garpentier, et al. 201@nd a follow up study may indicate
increase in survivglldbaih, et al. 2019)

The second brain tumor stywas conducted at Sunnybrook Health Sciences Centre in
Toronto, Canadavhichused the InSightec Exablate 220 kHz device and thrskgh MRI

guided sonications of brain tumors prior to the surgical resection. It also stiwfedsibility
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of inducing highly localized BBB permeability enhancement, safety, and that
chemotherapeutic concentration in the sonicated peritumor tissue was higher than in the
unsonicated tissugMainprize, et al. 2019)

Another study conducted in Alzheim@Visdase patients with the Exablate device
demonstrated safe BBB permeability enhancement and that the treatment could be repeated
one month later without any imaging or behavior indications of adverse éugsiman, et al.

2018) A third study with the samdevice investigated tHeasbility of usng functional MRI

to target motor cortex in Amyotrophic Lateral Sclerosis (ALS) patients again showing precisely
targeted BBB permeability enhancement without adverse effects in thesteledtructure
(Abrahao, et al. 2019l of these studies were conducted using Deffhityicrobubbles.

These studies have led to the current ongoing brain tumbwitiasix monthly treatments of

the brain tissue surrounding the resection cavity during the maintenance phase of the treatment
with temozolomide. This study sponsored by InSightedasg conducted in multiple
institutions. Similarly, a phase Il triah iAlzheimer{ Msd&ase sonicating the hippocampus with

the goal of investigating the safety and potential benefits from repeated (three treatments with
two-week interval) BBB permeability enhancement alone is ongoing. This study isedthgp

conducted inaveral institutions that have the device.

SONOTHROMBOLYSIS

Occlusion of blood flow through diseased vasculature is caused by thrombi, blood clots
which form in the body. Due to limitations in thrombolytic efficacy and speed,
sonothrombolysis, ultrasad which accelerates thrombus breakdown alone, or in combination
with thrombolytic drugsnd/or cavitation nuclehas been under extensive investigation in the
last two decade@ader, et al. 2016 50nothrombolysis promotes thrombus dissolution for the

treatment of strokéAlexandrov, et al. 2004a, Alexandrov, et al. 2004b, Molina, et al. 2006,
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Chen, et al. 2019)myocardial infarction(Mathias, et al. 2016, Mathias, et al. 2019,
Slikkerveer, et al. 2019)gcute peripheral arterial occlusi@@bben, et al. 2007 deep vein
thrombosigShi, et al. 2018)andpulmonary embolisnfDumantepe, et al. 2014, Engelberger

and Kucher 2014, Lee, et al. 2017)

Mechanisms, Agents, and Approaches

Ultrasound improvesecombinant tissue plasminogen activatdrP@A) diffusion into
thrombi and augms lysis primarily vieacoustic radiation force and stream{iptta, et al.
2006, Prokop, et al. 2007, Petit, et al. 201&dditionally, ultrasound increasesRA and
plasminogen penetration into the thrombus surface and enhances removal of fibrin degradation
products via ultrasonic bubbletavity, or acoustic cavitation, that induces microstreaming
(Elder 1958, Datta, et al. 2006, Suitet al. 2013)Two types of cavitation are correlated with
enhanced thrombolysistable cavitation, with highly nonlinear bubble motion resulting in
acoustic emissions at the subharmonic and ultraharmonics of the fundamental fréglyamcy
1964, Phelps and Leighton 1997, Bader and Holland 2CH4@8) inertial cawation, with
substantial radial bubble growth and rapid collapse generating broadband acoustic emissions
(Carstensen and Flynn 1982, Flynn 1982)

Specializedcontrast agents and tailored ultrasound schemes have been investigfated
the aim ofoptimizing sonothrombolysis. Petit et §2015)observed a greater degree ePA
lysis with BR38 microbubbles exposed toMHz pulsed ultrasound at an amplitude causing
inertial cavitation (1.3VPa peak rarefactional pressure) than at a lower amplitude causing
stable cavitation (0.351Pa peak rarefactional pressure). Goyal et2fl17)also measured a
higher degree of thrombolysis withMHz pulsed ultrasund at 1.0MPa peak rarefactional
pressure with inertial cavitation than at OMBa peak rarefactional pressure with stable

cavitation in arin vitro model of microvascular obstruction using perfluorobuies, lipid



951 shelled microbubble@Veller, et al. 20023s a nucleation agent. However, Kleven ef24119)

952 observed more than 60% fractional clot width loss for highly retracted human whole blood
953 clots exposetb rt-PA, Definity® and 220 kHz pulsed or continuous wave (CW) ultrasound at
954 an acoustic output with sustained stable cavitation throughout theifioaton periods

955 (0.22MPa peak rarefactional pressure) (Figbye

956 Echogenic liposomes loaded with-RA enhanced lysis compared tePA alone at

957 concentrations of 1.58 and 3.afgy/mL (Shekhar, et al. 201,73uggesting that encapsulation
958 of rt-PA could reduce the -RA dose by afactor of two with equivalent lytic activity.

959 Subsequently it has been demonstrated that these liposomes prB#eetgainst degradation

960 by plasminogen activator inhibitdr (PAI1), while achieving equivalent thrombolytic
961 efficacy relative to HPA, Definity®, and intermittent 22RHz CW ultrasoundShekhar, et al.

962 2019) Promising agents, including a nanoscale (< tf% contrast ageniBrussler, et al.

963 2018) and magnetically targeted microbubbl@3e Saint Victor, et al. 2019)have also

964 demonstrated enhanceeRA thromboysisin vitro. All of these investigators noted that in the
965 absence of +PA, the combination of ultrasound and microbubbles did not degrade the fibrin
966 network.

967 Several minimally invasive techniques have also been explored, with or without the
968 inclusion ofrt-PA or exogenousavitation nucleiln the clinical management of stroke, rapid
%69 WUHDWPHQWY DUH QHHGHG EHFDXVH RI WKH QHXURORJLYV
970 options that promote fast clot removal, reduce edema and intracerebral bleedlimgpave

971 patient outcomes are of immense value. Magnetic resonance-guaigel high intensity

972 focused ultrasound has been investigated for the treatment of both is¢Bengess, et al.

973 2012)and henorrhagic(Monteith, et al. 20133troke, and Zafar et gR019)have provided an

974 excellent review of the literature for this approach. Histotripsy, a form of high intensity focused

975 ultrasound that relies on the mechanical action of microbubblelglto ablate thrombi with
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and without HPA (Maxwell, et al. 2009Bader, et al. 2015, Zhang, et al. 2016b, Bader, et al.
2019)is under development to treat deep thnombosis. Additionally, ultrasourakccelerated
catheterdirected thrombolysis using the EKOS system (EKOS/BTG, Bothell, WA, USA)
combines 2MHz low-intensity pulsed ultrasound andRA without cavitation nucleito
improve lytic efficiency to treat deepein thrombosis(Shi, et al. 2018)yand pulmonary

embolism(Garcia 2015)

Cavitation monitoring

Acoustic cavitation has been shown to mediate direct fibrinofygesss, et al. 2013nd
accelerated +PA lysis (Everbach and Francis 2000, Datta, et al. 2006, Prokop, et al. 2007,
Hitchcock, et al. 2011 Passive and active cavitation detection techniques have been developed
to monitor acoustic cavitatiofiRoy, et al. 1990, Madanshetty, et al. 1991, Bader, et al. 2015)
Passive cavitation imaging, or passive &t mapping, employs a transducer array that
listens passively (i.e., no transmit) to emissions from acoustically activated microbubbles
(Salgaonkar, et al. 2009, Gyongy and Coussios 2010, Haworth, et al. 0dmn et al.
(2013) developed a prototype array enabling spectral analysis of bubble activity for
sonothrombolysis applications. Superharmonic Doppler effects have also been utilized to
monitor bubble activity from 500 kHz pulsed therapeutic ultrasq@adliopoulos and Choi
2016) Both a linear arragArvanitis and McDannold 2013a, Arvanitis, et al. 2013, Arvaniti
and McDannold 2013band a sparse hemispherical ar(Agconcia, et al. 201Mave been
integrated into a clinical magnetic resonance imggjeed high intensity focused ultrasound

system to assess enbbubble dynamics during sonothrombolysis in the brain.

Preclinical studies
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Information gathered from animal studies can help inform human clinical trials, despite a
strong species dependence of clg® A lytic susceptibility(Gabriel, et al. 1992, Flight, et al.
2006, Huang, et al. 2017A comprehensive systematic evaluation ofirl&ivo preclinical
sonothrombolysis studies was carried out by Auboire ef2@ll8) summarizing treatment
efficacy and safety outcomes in models of ischemic stroke. Since that review was published,
the efficacy of sonothrombolysis using nitrogen microbubbles stabilized with a non
crosslinked shell delivered inteaterially through a cheter and HPA delivered intravenously

has been demonstrated in a rat model of ischemic <fioken, et al. 2019)

Clinical studies

A rich literature exists of clinical trials xploring the safety and efficacy of
sonothrombolysis. Two recent metaalyses osevenrandomized controlled trialChen, et
al. 2019, Zafar, et al. 2013ktempt to determine whether the administration ¢tAtand
ultrasound improve outcomes in acute ischemic stroke. Both analyses conclude that
sonothronbolysis significantly enhances complete or partial recanalization, with improved
neurologic function (assessed via the National Institutes of Health Stroke Scale, NIHSS). An
ongoing clinical trial (TRUST; NCT03519737) will determine whether large vesskisions
can be recanalized with sonothrombolysis (Cerevast Medical, Inc., Bothell, WA, USA) and
PA, tenecteplase or alteplag€ampbell, et al. 2018yhile patients are transferred to a stroke
center for mechanical thrombectorftyauberti 2019)

Several clinical trials have shown that high MI pulsed diagnostic ultrasound exposure of
Definity® before and after percutaneous coronary intervention for ST elevation myocardial
infarction can prevent microvascular obstruction and improve functional outddadésas,
et al. 2016, Mathias, et al. 2019, Slikkerveer, et al. 204 8ystematic review of 16 catheter

directed sonothrombolysis clinical trials comprised mostly of retrospective case series using



1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

the EKOS system withouhicrobubble infusions determined that this treatment modality is
safe and promising for the treatment of deep vein thrombosis(BNiTet al. 2018) However,

a largesample randomized prospective clinical trial is needed to improve the clinical evidence
for use as a frodtne therapy for DVT. In retsspective studies in patients with pulmonary
embolism Lee et al(2017) conclude that catheter directed sonothrombolysis is safe and
decreases righgided heart strain, bi&chissler et ali2018)conclude that this therapy is not
associated with a reduction in mortality nor increased resolution of right ventricular
dysfunction. And finally, an ongoing trial in a small cohafrR0 patients with acute peripheral
arterial occlusion§Ebben, etl. 2017)will determine whether Luminify/(marketed in the US

as Definity?) and 1.8 MHz transdermal diagnostic ultrasound with intermittent high Ml (1.08)
and low MI (0.11) for visualization of the microbubbles and flow will improve recanalization.
In summary, sonothrombolysis has demonstrated clinical benefit in the treatment of acute and
chronic thrombotic disease. Ultrasodasskisted thrombolysis has a potential role as an
emerging viable and therapeutic option for future management of stroke amascular

disease.

CARDIOVASCULAR DRUG DELIVERY AND THERAPY

In cardiovascular drug delivery, cavitation nuclei areadministered or loaded with
different therapeutics for the treatment of various diseases. For atherosclerosis treatment in an
ApoE-deficient mouse model, intercellular adhesion moleduleargeted microbubbles
carrying angiogenesis inhibitor Endostar were u@éaghan, et al. 2018)Upon intermittent
insonification over the abdominal and thoracic cavity with 1 MHz ultrasound (2 ¥W/cm
intensity, 50% duty cycle) for 30 s with two repeats and another treatment 48 h later, plaque
area and intraplaque neovascularization were significegdiyced two weeks after treatment.

Percutaneous coronary intervention is often used to restore blood flow in atherosclerotic
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arteries. The treatment of coronary microembolization, a complication of percutaneous
coronary intervention, was demonstrated igspreated withultrasound (1 MHz, 2.0 W/ct
intensity, 10 s on and 10 s off, 20 min duration) and microR¥4Aocaded microbubbles four
days before coronary microembolizati@u, et al. 2015)This resulted in an improved cardiac
dysfunction. Although not a therapeutic study, Liu et (2D15) did show that plasmid
transfection to the myocardium was significantly larger when the microbubbles were
administered into the conary artery compared to intravenously via the ear vein in pigs even
though the intracoronary microbubble dose was half of the intravenous dose (1 MHz
ultrasound, 2 W/ci 50% duty cycle, 20 min duration). Percutaneous coronary intervention
can also restlin neointimal formation which induces restenosis. Sirolhioasied
microbubbles were shown to reduce neointimal formation in coronary arteries by 50% in pigs,
see Figure 7, 28 days after angioplasty in combination with a mechanically rotating
intravascudr ultrasound catheter (5 MHz, 500 cycles, 50% duty cycle, 0.6 MPa peak negative
pressure)(Kilroy, et al. 2015) Another research group showed that paclitéo@tled
microbubbles and ultrasound (1 MHz, 1.5 MPa for 10 s) can also significantly inhibit
neointimal famation in the iliac artery in rabbits one week after percutaneous coronary
intervention(Zhu, et al. 2016)

In diabetic cardiomyopathy, microbubbigediated delivery dibroblast growth factor has
shown therapeutic effects. Zhao e{2016)could prevent diabetic cardiomyopathy in rats by
treating the heart with ultrasound (14 MHz, 7.1 MPa for 10 s, three repeats with off interval of
1 s) and microbuldbs ceadministered with acidic fibroblast growth factor nanoparticles twice
weekly for 12 consecutive weeks. In already established diabetic cardiomyopathy in rats, the
same investigators eamdministered basic fibroblast growth factmmtaining nanopauies
with microbubbles with the same ultrasound treatment, albeit that it was given three times with

one day in between treatments. At four weeks after treatment, this resulted in restored cardiac



1075 functions as a result of structural remodeling of the eardissue(Zhao, et al. 2014)
1076 Microbubbles loaded with acidic fibroblast growth factor in combination with ultrasound (14
1077 MHz, 7.1 MPa for 10 s, three repeats with off interval of 1 s) also showedicagtly

1078 improved cardiac function in a rat model of diabetic cardiomyopathy. Treatment was
1079 performed twice weekly for 12 consecutive we€Kbhang, et al. 2016a)-or doxorubicin
1080 induced cardiomyopathy, repeated-amministration of microbubbles and nanoparticles
1081 containing acidic fibroblast growth factor in combination with ultrasound (14 MHz, 7.1 MPa
1082 for 10 s, three repé&awith off interval of 1 s) applied at the heart successfully prevented
1083 doxorubicin induced cardiomyopathy in rgi&an, et al. 2017)Once doxorubicin induced
1084 cardiomyopathy had occurred, microbubbiediated reversal of cardiomyopathy was shown
1085 by the delivery of survivin plasmid to cardiomyocytes and endeihedlls(Lee, et al. 2014)
1086 or glucagoHike peptidel (GLP-1) to cardiomyocytes, endothelial cells, vascular muscle cells,
1087 and mesenchymal cell€hen, et al. 2015j rats. The ultrasound settings were 5 MHz (120 V
1088 power, pulsing interval of 10 cardiac cycles at-sgstole) for a 5 min treatmefitee, et al.

1089 2014)or not specifiedChen, et al. 2015)The microbubblemediated gene therapy study by
1090 Chen et al(2016)showed that ANGPTL8 gene therapy does not need to be done in the heart
1091 to reversadoxorubicin induced cardiomyopathy in rats as their microbubble and ultrasound
1092 (1.3 MHz, 1.4 MPa peak negative pressure, four bursts triggered to every fousiisévid

1093 using a delay of 430 ms of the peak of the R wave) therapy was done in the B@es (
1094 treatment). This resulted in overexpression of ANGPTLS in liver cells and blood which
1095 stimulated cardiac progenitor cells in the epicardium.

1096 A few dozen articles have been published treating myocardial infarction with
1097 microbubble and ultrasourdediated gene deliveryn vivo, in mouse, rat, rabbit, and dog
1098 models. These are reviewed by Qian et (28018) Amongst these are a few targeted

1099 microbubble studies which all show that the targeted microbubbles induced higher degrees of
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gene trankection, increased myocardial vascular density, and improved cardiac function in
comparison to notargeted microbubbles. This improvement occurred independent of the type
of ligand on the microbubble, the gene that was transfected, or the animal moulil: ma
metalloproteinase 2 target with Timp3 gene in (&@n, et al. 2014)intracellular adhesion
moleculel target with Angl gene in rabbitgDeng, et al. 2015)P-selectin target with
hVEGF165 gene in ratShentu, et al. 2018WItrasound settigs for these studies were similar

at 1.6 MHz (1.6 MPa peak negative pressure, pulsing interval of four cardiac cycles) for 20
min during infusion of the plasmildaded microbubbles (both Yan et@014)and Shentu et

al. (2018), or 1.7 MHz (1.7 MPa peak negative pressure, pulsing interval every four to eight
cardiac cycles) for 5 min after bolus injection of the plasio@tled micobubblesgDeng, et

al. 2015)

Other gene therapy studies for vascular diseasadacttimulating angiogenesis for the
treatment of chronic hindlimb ischemia in rats using +hi#-3p-loaded microbubbles and
ultrasound (1.3 MHz, 2.1 MPa peak negative acoustic pressure, pulsing interval 5 s). The
treatment lasted for 20 min of which mibubbles were infused for 10 min and resulted in
improved perfusion, vessel density, arteriolar formation, and neovessel mat(Cainret al.

2015) Recently, successful gene therapy was demonstrated in baboons where Vascular
Endothelial Growth Factor (VEGH)lasmid loaded microbubbles were infused and ultrasound
(2-6 MHz, MI 1.9, repeated 5 s burst pulses witree bursts per minute) was applied for 10

min on days 25, 35, 45, and 55 of gestation with the transducer placed over the placental basal
plate(Babischkin, et al. 2019)his was a mechanistic study elucidating the role of VEGF in
uterine artery remodeling.

The gas core of the cavitation nuclei can also be the therapeutic. Suttof2@i4)have
shown that ultrasounchediated (1 MHz, 0.34 MPa acoustic pressure, 30 cycle pulse, 50 s

treatment) nitric oxide gas delivery froathogenidiposomes toex vivoperfused porcine
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carotid arteries induces potent vasorelaxation. The vasodialative effect of nitrid aadeel
echogenic liposomes upon insonification (5.7 MHz, 0.36 MPa peak negative pressure, 30 s
treatment) was also shown ex vivo perfused rabbit carotid arteries tiviarterial wall
penetration of nitric oxide confirmed by fluorescence microscgfiyn, et al. 2014) In
addition to this, vasodialative effects were demonstrated in carotid artevies in rats with
vasospasms following subarachnoid hemorrhage using 1 MHz ultrasound with 0.3 MPa peak
to-peak pressure, 50% duty cycle for a duration of 40 min with constant infusion of the
echogenic liposomes. This resulted in improved neurologication (limb placement, beam

and grid walking)Kim, et al. 2014) Ultrasoundactivation of the antioxidant hydrogen gas
encapsulated in microbubbles was shown to prevent myocechemiareperfusion injury in

rats when administered before reperfugida, et al. 2017)There was a dosgependent effect

as 2 x 18 microbubbles resulted in a more sfigant reduction in infarct size (70%) than 4

x 10° microbubbles (39%) compared to vehitieated rats. Furthermore, treatment with the
high dose hydrogemicrobubbles prevented changes in left ventriculardiadtolic and left
ventricular enesystolic dimension as well as minimal reductions in ejection fraction and
fractional shortening. Histological and ELISA analysis showed a reduced degree of myocardial
necrosis, apoptosis, hemorrhaging, inflammation, and oxidant damage. At the same time that
cardiowascular drug delivery and therapy using microbubbles and ultrasound is moving
forward to large animal and clinical studies, sophisticatettro models are being used and/or
developed for mechanistic studies, such as flow chambers (uSlides, (®indijnout, et al.
2015)and perfused 3D microvascular netwoflsang, et al. 2019 which human umbilical

vein endothelial cells are grown.

Clinical study
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Microbubbles and ultrasound were clinically investigated to augment muscle blood flow in
12 patients with stable sickle cell disease in the absence of a drug at the Oregon Health &
Scierce University, Portland, Oregon, USRBelcik, et al. 2017)Perfusion increased -fald
in the forearm flexor muscles upon Defiffitypfusion and insonification at 1.3 MHz (Ml 1.3).
Ultrasound was applied 3 times for 3 min with ~5 min intervals. The change in perfusion was
determined frm contrast enhanced ultrasound imaging and extended well beyond the region
where ultrasound was applied. This study showed that the therapeutic ultrasound settings
directly translate from mouse to man for superficial muscles, as the same investigators
demamstrated augmented blood flow in ischemic and-ischemic hindlimb muscles in mice
in the same study and an earlier publicatiBelcik, et al. 2015)However, for the preclinical

studies custormade microbubbles were used instead of Defthity

SONOBACTERICIDE

Sonobactericide has been defined as the use of ultrasound in the presence of cavitation
nuclei for the enhancement of bactericidal acfiosttwein, et al. 208). This topic has recently
gained attention with 17 papers being published in the last five years. Research on ukrasound
mediated enhancement of antimicrobials has focused on several sources of infections including
general medical devicgRonan, et al. 2016, Dongt al. 2017, Dong, et al. 2018, Hu, et al.
2018, Fu, et al. 2019xcne(Liao, et al. 2017)chronic bacterial prostatiti&i, et al. 2016)
infective endocarditigLattwein, et al. 2018)pneumonigSugiyama, et al. 2018prosthetic
joint infections(Li, et al. 2015, Lin, et al. 2015, Guo, et al. 2017a, Zhou, et al. 20d8jinary
tract infectiongHorsley, et al. 2019However, there was no specific disease aim in two studies
(Zhu, et al. 2014, Goh, et al. 201®)ne group targeted membrane biofouling for water and
wastewater industrig®\garwal, et al. 2014)Direct bacterial killing, biofilmdegradation and

dispersal, and increased or synergistic therapeutic effectiveness of antimicrobials have been



1174 reported as the therapeutic effects of sonobactericide. These studies show that sonobactericide
1175 can be applied to treat Gram+ or Grabacteria, vinen they are planktonic, associated with a
1176 surface and embedded in biofilm, or intracellular. The majority of these studies were carried
1177 outin vitro. However, seven were perform@dvivoin either micgLi, et al. 2015, Liao, et al.

1178 2017, Sugiyama, et al. 2018, Zhou, et al. 20185 (Yi, et al. 2016) or rabbits(Lin, et al.

1179 2015, Dong, et al. 201850nobactericide was mostly performedhwito-administration of

1180 antimicrobials. Investigators also employed an antimicrobial encapsulated in liposomes that
1181 were conjugated to the microbubb(emrsley, et al. 2019)r the antimicrobial lysozyme was
1182 a microbubble coatin@-iao, et al. 2017)or did not use amhicrobials altogethgfAgarwal, et

1183 al. 2014, Goh, et al. 2015, Yi, et al. 2018n extensive review of sonobactericide has been
1184 published recently by Lattwein et §2019) Although sonobactericide is an emaggstrategy

1185 to treat bacterial infections with intriguing potential, the mechanism and the safety of the
1186 treatment should be explored, particularly regarding biofilm degradation and dispersal. Future
1187 studies should also focus on maximizing the efficacsomobactericiden situ.

1188

1189 FUTURE PERSPECTIVES AND CONCLUSIONS

1190 Therapeutic ultrasound technology is experiencing a paradigm shift in terms of both
1191 technical developments and clinical applications. In addition to its inherent advantages for
1192 imaging (e.g.real time nature, portability and low cost), ultrasound in combination with
1193 cavitation nuclei is under exploration as a drug delivery modality. The results from several
1194 preclinical studies have already demonstrated the potential of ultrasespwhsive avitation

1195 nuclei to deliver multiple types of drugs (including model drugs, anticancer, therapeutic
1196 antibodies, genes, nanopatrticles, etc.) efficiently in various tumor models, including both
1197 ectopic and orthotopic models, for immunotherapy, brain diséagepmote the dissolution

1198 of clots, and in the treatment of cardiovascular disease and bacterial infections.
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Based on these encouraging preclinical data, several clinical trials have been initiated and
others are planned. However, whilst animal stugreside proof of concept, and impetus for
clinical studies, careful attention must be given to their relevance in human disease; in
particular, the applicability of therapeutic protocols, and appropriate ultrasound settings.
Otherwise we risk underestinnag the therapeutic effects and potential deleterious side effects.
The elucidation of all of the interactions between cavitation nugleils and drugs will help
to address this need. The biggest challenges lie in the large differences in time<eades b
the cavitation nuclei, drug release and uptake, and the biological response (Figure 8). A
multidisciplinary approach is needed to tackle these challenges integrating expertise in physics,
biophysics, biology, chemistry, and pharmacology.

Custommade microbubbles which serve as cavitation nuclei are often used for ultrasound
mediated drug delivery studies. An advantage is full control over the payload, as well as the
disease target. At the same time, full acoustical characterization and sterilitye of
microbubbles must be considered during translation to human studies, which often requires
approval from the United States Food and Drug Administration (FDA) or other similar federal
agencies in Europe and Asia. As an example, for gene therapy, @hllogéerent type of
genetic material loaded onto microbubbles need such approval, or will a class of cationic
microbubbles be approved regardless of the specific genefdrhher path would hinder fast
clinical translation. For now, eadministration of cugs with FDAapproved ultrasound
contrast agents is being explored in clinical trials. Apart from applications in the brain, ongoing
clinical studies evaluating microbubbteediated drug delivery are based on standard clinical
ultrasound scanners operagtimostly in Doppler mode. In order to promote the progress of this
emerging technology, it is very important to design and implement specific therapeutic
ultrasound pulse sequences that might be vastly different from clinical diagnostic imaging

output. Clinical scanners can indeed be modified to be able to generate drug delivery protocols.



1224 In a similar way that elastography requires long ultrasound pulses to generate the push
1225 sequencefDeffieux, et al. 2009) ultrasound scanners can be modified to be able to transmit
1226 drug delivery ultrasound sagnces with tailored and optimized parameters (pulse duration,
1227 duty cycle, and center frequency).

1228 Ultimately, ultrasound imagguided drug delivery and the monitoring of treatment
1229 response could be feasible with the same equipment. Additionally, witht ideeelopments

1230 in ultrasound imaging technology, ultrasoumeédiated therapy could be planned, applied and
1231 monitored in a rapid sequence with high spatial and temporal resolution. The use of a single
1232 imaging and therapy device would alleviate the needdaegistration, because the imaging
1233 equipment would also be used to induce localized therapy ensuring a perfecatan.

1234 Nonetheless, a compromise between efficacy and safety remains a major challenge for
1235 successful clinical applications of this duaéthodology, which combines retahe image

1236 guidance of therapeutic delivery.

1237 In conclusion, ultrasouncesponsive microbubbles which serve as cavitation nuclei are
1238 Dbeing used to treat a wide variety of diseases and show great potential preclinically and
1239 clinically. The elucidation of the cavitation nuclecell interaction and the implementation

1240 of drug delivery ultrasound sequences on clinical ultrasound scanners are expected to
1241 invigorate clinical studies.
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FIGURE CAPTIONS LIST

Figure 1. Combined effect of nonlinear propagation and focusing of the harmonics in a
perfluoropentanenicrometersizeddroplet. The emitted ultrasound wave has a fraquef

3.5 MHz and a focus at 3.81 cm, and the radius of the droplet is 10 um for ease of observation.
The pressures are given on the axis of the droplet along the propagating direction of the
ultrasound wave, and the shaded area indicates the locatibwe ofroplet (reprinted with

permission from Sphak et 42014).
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Figure 2. Ultrasoundactivated microbubbles can locally alter the tumor microenvironment
through four mechanisms: enhanced permeability, improved cpnéattced hypoxia, and

altered perfusion.

Figure 3. Schematic overview of how microbubbles and ultrasound have been shown to
contribute to cancer immunotherapy. From left to right: microbubbles can be used as antigen
carriers to stimulate antigen uptake dendritic cells. Microbubbles and ultrasound can alter
the permeability of tumors thereby increasing the intratumoral penetration of adoptively
transferred immune cells or checkpoint inhibitors. Finally, exposing tissues to cavitating

microbubbles can tfuce sterile inflammation by the local release of DAMPS.

Figure 4. 3D transcranial subharmonic microbubble imaging and treatment contrieb in

rabbit brain during BBB opening. Spectral information (top) shows the appearance of

subharmonic activitytat = 35 s into the treatment. Passive mapping of the subharmonic band

localizes this activity to the target region. Scale bar indicates 2.5 mm (reprinted (adapted) with

permission from Jones et §2018).

Figure 5. T1 weighted sagittaMR images showing leptomeningeal tumors in rat spinal cord

JUH\ DUURZKHDGYVY EHIRUH XOWUDVRXQGxDQG PLFUREXE
enhancement of the cord indicating BSCB opening (white arrows) Y&W UDV R X QG xD
microbubble treatment (righE R O X P Q UHSULQWHG DGDSWHG ZLWK SH

al. (2018).
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Figure 6. Simulated acoustic pressure and temperature in a representative subject exposed to
pulsed 22(kHz ultrasound with a 33.3% duty cycle. The absolute jiegdeak pressure
maximum for the simulations is displayed in gray scale. Temperetualisplayed using a heat

map with a minimum color priority write threshold of@. Computed tomography features

such as bone (cyan), skin and internal epithelium (beige), and clot (green), are plotted using
contour lines. The transducer is outlinedriagenta. Constructive interference is prominent in

the soft tissue between the temporal bone and the transducer. Some constructive interference
is also present in the brain tissue close to the contralateral temporal bone, however, the pressure
in this regon did not exceed the pressure in the M1 section of the middle cerebral artery.
Temperature rise was prominent in the ipsilateral bone along the transducer axis.

Computational model is described in Kleven e{20.19)

Figure 7. Histological sections of a coronary artery of a pig 28 days after angioplasty. Pigs
were treated with sirolimu®aded microbubbles only (a) or sirolimlemaded microbubbles

and ultrasound (b) using a of&nically rotating intravascular ultrasound catheter (5 MHz, 500
cycles, 50% duty cycle, 0.6 MPa peak negative pressure). Treatment with ultrasound and
sirolimusloaded microbubbles reduced neointimal formation by 50%. In both sections the
intima (I) andmedia (M) are outlined; scale bar is 500 pReprinted by permission from
Springer NatureSpringer,Annals of Biomedical EngineerinReducing Neointima
Formation in a Swine Model with IVUS and Sirolimus Microbubbles, Kilroy JP, Dhanaliwala

AH, Klibanov AL, Bowles DK, Wamhoff BR, Hossack JA, COPYRIGKAD15).

Figure 8. Different time scales of the therapeutic effects of ultrasound and cavitation nuclei

treatment. [C&]; = intracellular calcium; ROS = reactive oxygen species; ATP = adenosine



2249 triphosphate; EV = extracellular vesicl@geprinted (adapted) with permission from Lattwein

2250 et al.(2019).
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ABSTRACT

Therapeutic ultrasound strategies are actively under development to harness the mechanical
activity of cavitation nucleifor beneficial tissue bioeffects. The mechanical oscillations of
circulating microbubblesthe mostwidely investigatedcavitation nuclei which may also
encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized
uptake. Qcillating microbubbles can create stresses either on nearby tissue or in surrounding
fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune
system, biofilm, or tumors. This review summarizes recent investigatiansatea elucidated
interactions of ultrasound andavitation nucleiwith cells, the treatment of tumors
immunotherapythe blood brain barrier and blood spinal cord barrsemothrombolysis,
cardiovascular drug deliveryand sonobactericide. In particulaan overview of salient
ultrasound features, drug delivery vehicles, therapeutic transport routes, and preclinical and
clinical studies is provided. Successful implementation of ultrasoundanthtion nuclei
mediated drug delivery has the potential dbange the way drugs are administered

systemically, resulting in more effective therapeutics andifessive treatments.

Key words:Ultrasound,Cavitation nuclei,Therapy,Drug delivery, Bubblecell interaction,

SonoporationSonothrombolysisBlood-brain barrier openingsonobactericideTumor.
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INTRODUCTION

Around the start of the European Symposium on Ultrasound Contrast Agents (ESUCI),

ultrasouneresponsive cavitation nuclei were reported to have therapeutic potential
Thrombolysis wasshown to beacceleratedn vitro (Tachibana and Tachibana 19%)d
cultured cells were transfectedth plasmid DNA(Bao, et al. 1997)Since thenmnany research
groups have investigated the use of cavitation ndicitanultiple forms oftherapy including
both tissue ablation amfugandgenedelivery. In the early years, thmost widely invetigated
cavitation nucleiweregas microbubbles, ~10 um in diameteand coated with a stabilizing
shell whereas nowadaysth solid and liquichucleiare also investigated that can be as small
as a few hundred nndrugs can be cadministered with theavitation nuclei or loadeith or
on them(Lentacker, et al. 2009, Kooiman, et al. 20I#®)e diseases that can be treatedh wit
ultrasouneresponsivecavitation nuclei includéut are not limited t@ardiovascular disease
and cance(Sutton, et al. 2013, Paefgen, et al. 2026 currentleading causes of death
worldwide according to the World Health Organizatidfowbar, et al. 2019)This review
focuses on théatest insightanto cavitation nucleifor therapy and drug deliveriyom the
physial and biological mechanisms of bublaell interaction tgreclinical (bothin vitro and

in vivo) and clinical studie@imespan 2014£019) with particular emphasian thekey clinical
applications. The applications covered in this review atée treatmentof tumors
immunotherapythe blood brain barrier and blood spinal cord barakgssolution of clots,

cardiovascular drug delivergnd the treatment of bacterial infections.

CAVITATION NUCLEI FO R THERAPY
The most widely used cavitation nuclei are phadipid-coated microbubbles with a gas
core. For thel28 preclinical studiesncludedin the treatment sectiorsf this review the

commercially available and clinically approved Defifflity(Luminity® in Europe



79 octafluoropropane gas corphospholipidcoating (Definity® 2011, Nolsge and Lentzen

80 2016)microbubbles were used the most (in 22 studies). Definitys used for studies on all

81 applications discussed here and the most for openindldoe brain barrier EBB) (12

82 studies). SonoVUu€E (Lumasof? in the USA) is commercially available and clinically

83 approved as we(bulfur hexafluoridgyascore, phospholipidoating)(Lumasof 2016, Nolsge

84 and Lorentzen 201&nd was used in a total of 14 studies for the treatment elbreon tumors

85 (for exampé Xing et al (2016), BBB opening (for exampl Goutal et al (2018)), and

86 sonobactericide (for exangHu et al (2018). Other commercially available microbubbles

87 were used that are not clinically approved, such as ER&3neider, et al. 2011) the study

88 by Wang et al(2015d)and MicroMarker(VisualSonics)n the study by Theek et gR016.

89 Custommade microbubbles are as diverse as their applications, with special characteristics

90 tailored to enhance different therapeutic strategies. Different types of gasses were used as the

91 core such as air (for exangdggen et al (2014), nitrogen (for examglDixon et al (2019),

92 oxygen (for exam@Fix et al (2018), octafluoropropanef@r exampé Pandit et al (2019),

93 perfluorobutane (for examplDewitte et al (2015), sulfur hexafluoride(Bae, et al. 2016,

94 Horsley, et al. 2019r a mixture of gases such as nitric oxide and octafluoroprq@arten,

95 etal. 2014pr sulfur hexafluoride and ggen(McEwan, ¢ al. 2015) While fluorinated gases

96 improve thestability of phospholipiecoated microbubblg®Rossi, et al. 2011bther gases can

97 Dbe loaded for therapeutic applicatiossch aoxygen to treat tumor@vicEwan, et al. 2015,

98 Fix, et al. 2018, Nesbitt, et al. 201&)d nitric oxidgKim, et al. 2014, Sutton, et al. 2014

99 hydrogen gagHe, et al. 201 7jor treatment of cardiovascular disease. The main phospholipid
100 component of custormade microbubbles is usually a phosphatidylcholine such,zs
101 dipalmitoyltsnglycerc3-phosphocholine (DPPCused in 13 studies, for exaraewitte et
102 al. (2015) Bae et al(2016) Chen et al(2016) Fu et al (2019) or 1,2-distearoysnglycerc

103 3-phosphocholine (DSPCused in 18 studies, for examalilroy et al (2014) Bioley et al
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(2015) Dong et al (2017) Goyal et al(2017) Pandit et al (2019) These phospholipids are
popular because they are also the main component in DE&figitgfinity® 2011) and
SonoVué&/Lumaso® (Lumasof? 2016) respectively. Another key component of the
microbubble coating is a PEGylated emulsifier such as polyoxyethylene (40) stearate-(PEG40
stearate; for exam@Kilroy et al (2014) or the most often used2-distearoydsnglycero3-
phosphoethanolamirg-carboxy (polyethyleneglycol) DPSPEPEG2000; for examplBelcik

et al (2017), which is added to inhibit coalescence and to increase Yo half-life (Ferrara,

et al. 2009) In general two methods are used to produce custane microbubbles:
mechanical agitation (for exangdto et al (2018) or probe sonication (faaxampé Belcik et

al. (2015). Both these methods produce a population of microbubbles that is polydisperse in
size. Monodispersed microbubbles produced by microfluidics have recently been developed,
and are starting to gaattention for preclinical therapeutic studies. Dixon et &2019)usel
monodisperse microbubbles to treat ischemic stroke.

Various therapeutic applications have inspired the dpwadmt of novel cavitation nuclei,
which is discussed in depth in the companion review by Stride (@04I9) To improve drug
delivery, therapeutics can be eitheraziministered with or loaded onto the microbubbles. One
strategy for loading is to create microbubbles stabilized by -doatpining polymeric
nanoparticles around a gas c{Baipstad, et al. 2017Another strategy is to attach therapeutic
molecules or liposomes to the outside of microbubblegXample by biotiravidin coupling
(Dewitte, et al. 2015, McEwan, et al. 2016, Nesbhitt, et al. 2B&)ogenic liposomes can be
loaded with different therapeutics or gases and have been studied for vascular drug delivery
(Sutton, et al. 204 treatment of tumor&Choi, et al. 2014)and sonothrombolysi{&hekhar,
et al. 2017) ACT® combines Sonazdtdmicrobubbles with droplets that can be loaded with
therapeutics for treatment of tumafisotopoulis, et al. 2017)The cationic microbubbles

utilized in the treatment sections of this reviewre usednostly for vascular drug delivery,
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with genetic material loaded on the microbubble surface by cltangaing (for exampm Cao

et al (2015). Besides phospholipids and nanoparticles, microbubbles can also be coated with
denatured proteins such as albumin. Opfi¥q@ptisor™ 2012)is a commercially available

and clinically approved ultrasound contrast agent that is coated with human albdmisedn

in studies on treatment of ndmain tumorgXiao, et al. 2019)BBB opening(Kovacs, et al.
2017b, Payne, et al. 201&nd immunotherapfMaria, et al. 2015)Nanasized particlesited

in this reviewhave been used as cavitation nuclei for treatment of tuswmeh,ananodroplets

(for exampleCao et al (2018) and nanocupgMyers, et al. 2016)for BBB opening

(nanodroplets, Wutel. (2018), and for sonobactericide (hanodropjéssio et al (2017a).

BUBBLE-CELL INTERACTION
Physics

The physics of the interaction between bubbles or droplets and cells are described as these
are the main cavitation nuclei used for drug delivery and therapy.
Physics of MicrobubbletCell Interaction

Being filled with gas and/arapormakes bubbles highly responsive to changes in pressure
and hence exposure to ultrasound can cause rapid and dramatic changes in their volume. These
volume changes in turn give rise to an array of mechanical, &emnd chemical phenomena
WKDW FDQ VLJQLILFDQWO\ LQIOXHQFH WKH EXEEOHVY LPPFL
effects. For the sake of simplicity, these phenomena will be discussed in the context of a single
bubble. It is important to note, howevéhnat biological effects are typically produced by a
population of bubbles and the influence of inter bubble interactions should not be neglected.

a. Mechanical effects

A bubble in a liquid is subject to multiple competing influences: the driving predsiine o

imposed ultrasound field, the hydrostatic pressure imposed by the surrounding liquid, the
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pressure of the gas and/or vapor inside the bubble, surface tension and the influence of any
coating material, the inertia of the surrounding fluid, and damgbirggto the viscosity of the
surrounding fluid and/or coating, thermal conduction, and/or acoustic radiation.

The motion of the bubble is primarily determined by the competition between the liquid
inertia and the internal gas pressure. This competitionbeacharactered by using the
RayleighPlesset equation for bubble dynamics to compare the relative contributions of the

terms describing inertia and pressure to the acceleration of the bubb{Elyrall 1975a)

47 F@év—AE &GL +(E2(4 (Eq.1)

whereR is the time dependent bubble radius with initial v L 4 is the pressure of the gas
inside the bubblely is the combined hydrostatic and time varying pressure in the licyisd,
the surface tension at the gas liginterface, ancézis the liquid density.

Flynn (1975b,a) identified two scenarios: if the pressure factor (PF) is dominant when the
bubble approaches its minimum size, then the bubble will underg@ised volume
oscillations. If the inertia term is dominant (IF), then the bubble will undergo inertial collapse,
similar to an empty cavity, after which it may rebound or it may disintegrate. Which of these
scenarios occurs is dependent upon the bubtgansion ratioRma/Ro, and hence the bubble
size and the amplitude and frequency of the applied ultrasound field.

Both inertial and nonertial bubble oscillations can give rise to multiple phenomena that
LPSDFW WKH EXEEOHYV LPPhH&e B/ irpétt@ny ol Repapyd QhwseD Q G
include:

(i) Direct impingementteven at moderate amplitudes of oscillation, the acceleration of the

bubble wall may be sufficient to impose significant forces upon nearby surfaces, easily



178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

deforming fragilestructures such as a biological cell membrgwnas Wamel, et al. 2006, Kudo
2017)or blood vessel wallgChen, et al. 2011)

(if) Ballistic motion +in addition to oscillating, the bubble may undergo translation as a
result of the pressure gradient in the fluid generatedgrppagating ultrasound wave (primary
radiation force). Due to their high compressibility, bubbles may travel at significant velocities,
sufficientto push them toward targets for improved local deposition of a (@agton, et al.
1999)or penetratebiological tissugCaskey, et al. 2009, Bader, et al. 2015, Acconcia, et al.
2016)

(iif) Microstreaming zwhen a structure oscillates in a viscous fluid there will be a transfer
of momentum due to interfacial friction. Any asymmetry in the oscillation will result in a net
motion of that fluid in the immediate vicinity of the structure known as microstregikolly
and Nyborg 1956)This motion will in turn impose shear stresses upon any nearby surfaces as
well as increasing convection within the fluidlie tothe inherently notinear nature of bubble
oscillations (equation 1), both namertial and inertial cavitation can produce significant
microstreaming, resulting in fluid velocities on the order airfi/s(Pereno and Stride 2018)

If the bubble is close to a surface then it will also exhibit-syeherical oscillations which
increases the asymmetry and hence the microstreaming even f(xjleorg 1958,
Marmottant and Hilgenfeldt 2003)

(iv) Microjetting +another phenomenon associated with-spherical bubble oscillations
near a surface is the generation of a liquid jet during bubble collapse. If there is sufficient
asymmetry in the acceleration of the fluid on eigide of the collapsing bubble, then the more
rapidly moving fluid may deform the bubble into a toroidal shape causing a high velocity jet
to be emitted on the opposite side. Microjetting has been shown to be capable of producing
pitting even in highly raBent materials such as ste@audé and Ellis 1961, Benjamin and

Ellis 1966) However, as both the direction and velpdi the jet are determined by the elastic
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properties of the nearby surface, its effects in biological tissue are more difficult to predict
(Kudo and Kinosha 2014) Nevertheless, as shown by Chen e(2011) in many cases a
bubble will be sufficiently confined that microjetting will impact surrounding structures
regardless of jet direction.

(v) Shockwaveszan inertially collapsing cavity that results in supersonic bubble wall
velocities creates a significant discontinuity in the pressure in the surrounding liquid leading
to the emission of a shockwave, which may impose significant stresses on nearby structures

(vi) Secondary radiation forceeat smaller amplitudes of oscillation a bubble will also
generate a pressure wave in the surrounding fluid. If the bubble is adjacent to a surface,
interaction between this wave and its reflection from the surface leageéssure gradient in
the liquid and a secondary radiation force on the bubble. As with microjetting, the elastic
properties of the boundary will determine the phase difference between the radiated and
reflected waves and hence whether the bubbles roexads or away from the surface. Motion
towards the surface may amplify the effects of({ii),, and (vi).

b. Thermal effects

As describedabove,an oscillating microbubble will reradiate energy from the incident
ultrasound field in the form of a spherical pressure wave. In addition, the nonlinear character
of the microbubble oscillations will lead to energy being reradiated over a range of fiequenc
At moderate driving pressures the bubble spectrum will contain integer multiples (harmonics)
of the driving frequency; and at higher pressures also fractional components (sub and
ultraharmonics). In biological tissue, absorption of ultrasound incseagk frequency and
this nonlinear behavior thus also increases the rate of g€atilgenfeldt, et al. 2000, Holt
and Roy 2001)Bubbles will also dissipate energy as a result of viscous friction in the liquid
and thermal conduction from the gas eothe temperature of which increases during

compression. Which mechanism is dominant depends on the dize mibble, the driving
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conditions and the viscosity of the mediurhermal damping is however typically negligible
in biomedical applications ofltruasound as the time constant associated with heat transfer is
much longethanthe period of the microbubble oscillatiofirosperetti 1977)

c. Chemical effects

The temperature rise produced in the surrounding tissue will be negligible compared with
that occurring inside the bubble, especially during inertial collapse when it may reach several
thousand Kelvin(Flint and Suslick 1991)The gas pressure similarly increases significantly.
While only sustaired for a very brief period, these extreme conditions can produce highly
reactive chemical species, in particular reactive oxygen species (ROS), astivedirassion
of electromagnetic radiation (sonoluminescence). ROS have been shown to play asignifica
role in multiple biological process@a/interbourn 2008and both ROS and sonolumigesce

may affect drug activityRosenthal, et al. 2004, Tramdtham, et al. 2009, Beguin, et al. 2019)

Physics of Poplets +Cell Interaction

Droplets consisbf an encapsulated quantity afvolatile liquid, such agerfluorobutane
(boiling point-1.7 °C) or perfluoropentane (boiling point 29 °C), which is in a superheated
state at body taperatue. Superheated stateeans that although thelatile liquids have a
boiling point below 37 °C, these dropletemainin the liquid phase and do not show
spontaneousaporizatiomafter injectionVaporizationcan be achieveithisteadoy exposure to
ultrasound of significant amplitudeia a processknown asacoustic droplet vaporization
(ADV) (Kripfgans, et al. 2000)Before vapdeation, the droplets are typically ooeder of
magnitude smaller than the emerging bubbles, aral prfluorocarbon is inert and
biocompatible (Biro and Blais 1987) These properties enable a range of therapeutic
possibilities (Sheeran and Dayton 2012, LBanks, et al. 2019)For example, unlike

microbubbles, small droplets may extravasate from the leaky vessels into tumodtissoe
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theenhanced permeability and retention (EBR@ct(Long, et al. 1978, Lammers, et 2012,
Maeda 2012)and tlen be turned into bubbles by ADRapoport, et al. 2009, Kopechek, et
al. 2013) Loading the droplets with drug enablelcal delivery (Rapoport, et al. 2009y
way of ADV. The mechanism behind this is that the emerging bubbles give rise to similar
radiation forces and microstreaming as described in the physite aficrobubble tcell
interaction above It should be noted that oxygen is taken up during bubble growth
(Radhakrishnan, et al. 201&Yhich could lead to hypoxia.

The physics of the dropletcell interaction is largely governdyy the ADV. In general, it
has been observed that ADV is promoted by the following factarge peak negative
pressurs (Kripfgans, et al. 200Qusually obtained bgtrong focing of the generated beam,
high frequency of the emitted wave, and a relatively long distance between the transducer and
the droplet. Another observation that has bemmewith micrometersized dropletss that
vaporization often starts at a welkfinednucleation spot near the side of the droplet where the
acoustic wave impingg$hpak, et al. 2014hese facts can be explained by considering the
two mechanisms that play a role in achieving a large peak negative pressure inside the droplet:
acoustic focusing and nonlinear ultrasound propagéB8bpak, et al. 2016)n the following,
lengths and sizes are related to the wavelength, i.e. the distameked by a wave in one

oscillation (e.g., a 1 MHz ultrasound wave that is traveling in water with a wave, speéd

5944
sr2x

1500 m/s haawavelengthw (m), of —S L L r&rsw.e.1.5 mm).

a. Acoustic focusing

Because the speed of sound in perfluarbonliquidsis significantly lower than in water
or tissue, refraction of the incident wave will occur at the interface between these fluids, and
the spherical shape of the droplet will give rise to focuslimg assessment of thigcusing
effectis notstraightforward because the traditional way of describing these phenomena with

rays that propagate along straight lines (the ray approach) only holds for objects that are much



278 larger than the applied wavelength. In the current case, the frequency afedh typasound

279 wave used for insonification is in the order e MHz, yielding wavelengths in the order of

280 1500 £300 pm, while a droplet will be smaller by&orders of magnitude. Beside thising

281 the ray approachhe lower speed of sound in perfluorocarbon would yield a focal spot near
282 the backside of the droplet, which is in contradiction to observations. The correct way to treat
283 the focusing effect is to solve the full diffraction problem by decomposing theeimoivave,

284 the wave reflected by the droplet, and the wave transmitted into the droplet into a series of
285 spherical waves. For each spherical wave, the spherical reflection and transmission coefficients
286 can be derived. Superposition of all the sphericalesaxelds the pressure inside the droplet.
287 Nevertheless, when this approach is only applied to an incident wave with the frequency that
288 is emitted by the transducer, this wéhad neither tdhe right nucleation spot nor to sufficient

289 negative pressureifeaporizationNanoscale dropleimay be too small to make effective use

290 of the focusing mechanism and ADV is therefore less dependent on the frequency

291

292  b. Nonlinear ultrasound propagation

293 High pressureamplitudes high frequenies and long propagation deénces all promote

294 nonlinear propagation of an acoustic wg¥amilton and Blackstock 2008)n the time

295 domain, nonlinear propagation manifests itagktin increasing deformation of the shape of the
296 ultrasound wavevith distane traveled In the frequency domaithis translates to increasing

297 harmonic contenti.e. frequeniesthataremultiples of thedriving frequency. The total incident

298 acoustic pressuré: P at the position of a nanodroplet can therefore be written as

299 LR L Alg=..."9fFE 644 (Eq.2)

300 wherewhich n is the number of a harmonie; and 64 are the amplitudand phase of this

301 harmonic, andf is the angular frequency of the emitted wave. The wavelength of a harmonic

302 wave is a fraction of the emitted wavelength.
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The above effects areth important in case of AD¥nd should therefore be combined.
This implies hat first the amplitudes and phases of the incident nonlinear ultrasound wave at
the droplet location should be computed. Next, for each harmonic, the diffraction problem
should be solved in terms of spherical harmonics. Adding the diffracted waves timside
droplet with the proper amplitude and phase will then yield the total pressure in the droplet.
Figure 1 shows that the combined effects of nonlinear propagation and diffraction can cause a
dramatic amplification of the peak negative pressure imthemetersizeddroplet, sufficient
for triggering droplevaporization(Shpak, et al. 2014Moreover, the location of the neye
pressure peak also agrees with the observed nucleation spot.

After vaporization has started, the growth of the emerging bubble is limited by inertia and
heat transfer. Itheabsence of the heat transfer limitatithreinertia of the fluid that surtands
the bubble limits the rate bubble growthwhich is linearly proportional to time and inversely
proportional to the square root of the density of the surrounding fluid. When inertia is
neglected, thermal diffusion is the limiting factor in the tpsoms of heat to drive the
endothermic vaporization process of perfluorocarbon, causing the radius of the bubble to
increase with the square root of time. In reality, both processes occur simultaneously, where
the inertia effect is dominant at the earlyggtand the diffusion effect is dominant at the later
stage of bubble growtfhe final size that is reached by a bubble depends on the time that a
bubble can expand, i.e. on the duration of the negative cycle of the insonifying pressure wave.
It is therefoe expected that lower insonification frequencies give rise to larger maximum
bubble size. Thus, irrespective of their influence on triggering ADV, lower frequencies would
lead to more violent inertial cavitation effects and cause more biological danmge, a
experimentally observed for droplets with a radius in the order of 1q@Buargess and Porter

2019)
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Biological mechanisms and bioeffects of ultrasoundctivated cavitation nuclei

The biologicalphenomenaf sonoporationi(e. membrane pore formation), stimulated
endocytosis, and opening of cedll contacts and théioeffecs of intracellular calcium
transients, reactive oxygen species generation, cell membrane potential change, and
cytoskeleton changes have bedsservedor several yeargSutton, et al. 2013, Kooiman, et
al. 2014, Lentacker, et al. 2014, Qin, et al. 2018wever,other bioeffecs induced by
ultrasoundactivated cavitation nuclei have recently been discavéieese include membrane
blebbing asarecovery mechanism for reversible sonoporaflmsth for ultrasoundctivated
microbubbles(Leow, et al. 2015pand upon ADV(QIn, et al. 20183) extracellular vesicle
formation(Yuana, et al. 2017)suppression of efflux transportersycoprotein(Cho, et al.
2016, Aryal, et al. 2017and BBB(Blood Brain BarrierfransporteigenegMcMahon, et al.
2018) At the same time, more insight has been gained iotiigen of the bioeffecs, largely
through the use of live cell microscopy. For sonoporation, real time membrane pore opening
and closure dynamics were reveaieith pores <30 prhclosing within 1 min while pores
>100 pnt did not resea(Hu, et al. 2013as well as immediate rupture of filamentary actin at
the pore locatiorfChen, et al. 2014and correlation of intracellular reactive oxygeraps
levels with the degree of sonoporati@ne, et al. 2018)Realtime sonoporation and opening
of cell-cell contacts in the same endothelial cebsbeen demonstrated as well for a single
example(Helfield, et al. 2016)The applied acoustic pressure was shown to deteumpiake
of model drugs via sonoporation or endocytosis in another giDeyCock, et al. 2015)
Electronmicroscopy revealed formation of transient membrane disruptions and permanent
membrane structures.e. caveolar endocytic vesicles, upon ultrasound and microbubble
treatmen{Zeghimi, et al. 2015A study by Fekri et a(2016)revealed that enhanced clathrin
mediated endocytosis and flyxhase endocytosis occur througtistinct signaling

mechanisms upon ultrasound and microbubble treatment. The majorityedfitheffects have
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been observed im vitro modelsusing largely norendothelial celland may therefore not be
directly relevant tan vivotissue whereintravasculamicron-sizedcavitation nuclewill only

have contact with endothelial celland circulating blood cellOn the other hand, the
mechanistic studies by Belcik et @015, 2017and Yu et al(2017)do show translation from

in vitro to in vivo. In these studies]trasoundactivated miaobubbles were shown to induce a
sheardependent increase in intravascular adenosine triphosphate (ATP) from both endothelial
cells and erythrocytesan increase in intramuscular nitric oxidged downstream signaling
through both nitric oxide and prostagthns which resulted in augmentation of muscle blood

flow. Ultrasound settings were similar, namely 1.3 MHz, Ml 1.3 for Belcik 2815, 2017)

and 1 MHz, MI 1.5 for Yu et ak2017) with MI defined as/ + L%WhereP_ is the peak

negative pressure of the ultrasound wave (in MPaJf #racenter frequency of the ultrasound
wave (in MHz).

Whether or not there i direct relatioship between the type of microbubble oscillation
andspecifichioeffecs remains to be elucidated, although more insight has been gained through
ultrachigh-speed imaging of the microbubble behavior in conjunction with live cell
microscopy.For example there sems to b@ microbubble excursion threshold above which
sonoporation occurgHelfield, et al. 2016) Van Rooij et al.(2016) further showed that
displacement of targeted microbubbles enhanced reversible sonoporation and preserved cell
viability whilst microbubbleghat did not displaceere identified ashe main contributos to
cell death

All of the dorementiond biological observationsmechanismsand effecs relate to
eukaryotic cellsStudy of he biological effect®f cavitationon for examplebacteriais in its
infancy, butstudiessuggesthatsonoporation can be achieved in Grapacteria with dextran
uptake and gentransfection bag reported inFusobacterium nucleatuifidan, et al. 2007)

More recent studies have investigated the effect of microbubbles and ultrasogeteon
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expressior(Li, et al. 2015, Dong, et al. 2017, Zhou, et al. 20I8g findings are conflicting
becausealthough thg all show a reduction inexpression ofgenes involved in biofilm
formation and resistance to antibioti@s) increase inexpression ofgenes involved with
dispersion and detachment of biofilm&s alsofound (Dong, et al. 2017)This cavitatiorn

medated bioeffecheeds further investigation.

Modelling Microbubble *cell +drug interaction

Whilst there have been significant efforts to model the dynamics of ultrasound driven
microbubbles(Faez, et al. 2013, Dollet, et al. 201%ss attention has been paid to the
interactions between microbubbles and cells or their impact upon drug transport. Currently
there are no models that deber the interactions between microbubbles, cells, and drug
molecules. Several models have been proposed for the microbttaak interaction in
sonoporation focusing on different aspects: the cell expansion and microbubble jet velocity
(Guo, et al. R17b) theshear stress exerted on the cell memb(&vie 2002, Doinikov and
Bouakaz 2010, Forbes and O'Brien 2012, Yu and Chen 2014, Cowley and McGinty 2019)
microstreaming@Yu and Chen 2014¥hear stress exerted on the cell memhraoembination
with microstreamindLi, et al. 2014)or other flow phenomen@u, et al. 2015, Rowlatt and
Lind 2017)generated by arsaillating microbubble. In contrast to the other models, Man et al.
(2019) proposethat the microbubblgenerated shear stress does not induce pore formation,
butthat this is instead due toicrobubble fusion with the membrane and subseq@@X OO RXW’
of cell membrane lipid molecudy the oscillating microbubble. Models for pore formation
(for example Koshiyama and Wadad011) and resealingZhang, et al. 2019)n cell
membranes have also been developed, but thegelsneglect the mechanism by which the
pore is created. There is just one sonoporation dynanadsl, developed by Faat al. (2012)

that relates the uptakd the model drug propidium iodide (PI) to the size of the created
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membrane pore and the pore resealing time for a single cellimwno setting. The model

describes the intracellular fluorescence intensity of Pl as a function ofR{theyy:
((PL U@&HA®ksF A S04 (Eq.3)

where . is the coefficient that relates the amount of Pl molecules to the fluorescence intensity
of PI-DNA and PIRNA, D is the diffusion coefficient of PICo is the extracellular PI
concentrationro is the initial radius of the pore,is the pore resealing coefficient, ants
WLPH 7KH FRHIILFLHQW . LV GHWHUPLQHG E\ WKH VHQVLW
and if unknown the equation can still be used because it is the pore sizéateffid Eq-&,

that determines the initial slope of the Pl uptake pattern and is the scaling factor for the
exponential increase. A cell with a large pore will have a steep initial slope of Pl uptake and
the maximum P1 intensity quickly reaches the @atealue A limitation of this model is that
equation 3 is based on tvdimensional free diffusion models, which holds foifNA but not

for PLDNA because this is confined to the nuclelise model isSndependent of cell typas

Fan et al. have demonated agreement with experimental resuitboth kidney(Fan, et al.
2012)and endothelial cellg=an, et al. 2013)Other researchers have also used this model for
endothelial cell studies and also classified the distribution of both the pore size and pore
resealing coefficients using Principal Component Analysis to determine whether cells were
reversibly or irreverslly sonoporated. In the context of blood brain barfie8B) opening,
Hosseinkhah et a{2015)have modeled the microbubkdenerated shear and circumferential
wall stress for 5 pm microvessels upon microbubble oscillation at a firemhanical index

(MI) of 0.134for a range of frequencies (0.5, 1, and 1.5 MHz). The wall stragees
dependent upomicrobubble siz€range investigated 218 um in diameter) andltrasound
frequeng. Wiedemair et al(2017) have also modelled the Wahear stresgienerated by
microbubble (2 um diameter) destruction at 3 Mblzlarger microvessels (200 pdametey.

The presence of red blood celMasincluded in the mdel andwasfound to cause confinement
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of pressure and shear gradients to theicof the microbubbleAdvances in methods for
imaging microbubbleell interactions will facilitate the development of more sophisticated

mechanistic models.

TREATMENT OF TUMORS (NON-BRAIN)

The structure of tumor tissue varies significantly from that of healthy tissue which has
important implications for its treatment. To support the continuous expansion of neoplastic
cells, the formation of new vessels (i.e. angiogenesis) is néaalgtila and de Sauvage 2013)

As such, a rapidigeveloped, poorkprganized vasculature with enlarged vascular openings
arises. In between these vessedsgé avascular regions exist, which are characterized by a
dense extracellular matrix, high interstitial pressure, low pH, and hypoxia. Moreover, a local
immunosuppressive environment is formed, preventing posaiitidumor activity by the
immune system

Notwithstanding the growing knowledge of the pathophysiology of tumors, treatment
remains challenging. Chemotherapeutic drugs are typically administered to abolish the rapidly
dividing cancer cells. Yet, their cytotoxic effects are not limited to caratks; causing dose
limiting off-target effects. To overcome this hurdle, chemotherapeutics are often encapsulated
in nanesized carriers, i.e. hanoparticles, that are designed to specifidaliye through the
large openings of tumor vasculature, whigérty excluded frorhealthy tissuéy normal blood
vesselgdLammers, et al. 2012, Maeda 201Respite being highly promising in podinical
studies, drugontaining nanoparticles have shownited clinical success due to the vast
heterogeneity in tumor vasculatu(Barenholz 2012, Lammers, et al. 2012, Wang, et al.
2015d) In addition, drug penetration into the deeper layers of the tumor can be constrained

due to high interstitial pressure and a dense extracellular matrix in the tumor. Furthermore,
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acidic and hypoxic regions limit the efficacy of radiatiand chemothergpbased treatments
due to biochemical effecttMehta, et al. 2012, McEwan, et al. 2015, Fix, et al. 2018)
Ultrasoundtriggered microbubbles arable to alter the tumor environment locally, thereby
improving drug delivery to tumors. These alterations are schematically represehigaré
2 and include: improving vascular permeability, modifying the tumor perfusion, reducing local
hypoxia, and wercoming the high interstitial pressure.

Several studies have fourttiat ultrasounddriven microbubblesmproved delivery of
chemotherapeutic agents in tumors, which resulted in increasetraot effectfWang, et
al. 2015d, Snipstad, et al. 2017, Zhang, et al. 2M8jeover, several gene products could be
effectively delivered to tumor cellgia ultrasounedriven microbubbles resultingin a
downregulation of tumespecific pathways and an inhibition in tumor groitopechek, et
al. 2015, Zhou, et al. 2015Theek et al(2016) furthermore confirmed that nanoparticle
accumulation can be achieved in tumors with low EPR efiacig transport and distribution
through the dense tumor matrix and into regions with eldvaterstitial pressure is often the
limiting factor in peripheral tumorsAs a result,several reports have indicated that drug
penetration into the tumor remained limited after sonoporation, which may impede the
eradication of the entire tumor tiss{iigggen, et al. 2014, Wang, et al. 2015d, Wei, et al. 2019)
Alternatively, microbubble cavitation can affect tumor perfusion, as vasoconstriction and even
temporary vascular shdiown havebeen reporteéx vivo(Keravnou, et al. 201@&ndin vivo
(Hu, et al. 2012, Goertz 2015, Yemane, et al. 20TBese effects were seen at higher
ultrasound intensities (>1.5 MPa) and are believed to result from inertitto@mvileading to
violent microbubble collapses. As blood supply is needed to maintain tumor growth, vascular
disruption might form a different approach to cease tumor developManbbubbleinduced
microvascular damage was able to complement the dftmtts of chemotherapeutics and

antivascular drugs by secondary ischemmeadiated cytotoxicity, which led to tumor growth
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inhibition (Wang, et al. 2015a, Ho, et al. 2018, Yang, et al. 2018kpddition, a syargistic

effect between radiation therapy and ultrasestthulated microbubble treatment was
observed, as radiation therapy also induces secondary cell death by endothelial apoptosis and
vascular damagg@.ai, et al. 2016, Daecher, et al. 201Mevertheless, several adverse effects
have been reported due to excessive vascular disruption, including hemorrhage, tissue necrosis,
and the formation of thromli§Goertz 2015, Wang, et al. 2015d, Snipstad, et al. 2017)

Furthermore, oxygenontaining microbubbles can provide a local oxygen supply to
hypoxic areas, rendering oxygeependent treatments more effee. This is of interest for
sonodynamic therapy, which is based on the production of cytotoxic reactive oxygen species
(ROS) by a sonosensitizing agent upon activation by ultrasound in the presence of oxygen
(McEwan, et al. 2015, McEwan, et al. 2016, Nesbt al. 2018)As ultrasound can be used to
stimulate the release of oxygen from oxygsarrying microbubbles while simultaneously
activating a sonosensitizer, this approach has shown to be particularly useful for the treatment
of hypoxic tumor typegMcEwan, et al. 2015, Nesbitt, et al. 201&dditionally, low
oxygenation promotes resistance to radiotherapy, which can be circumvented by a momentary
supply of oxygen. Based on this notion, oxyganrying microbubbles were useditoprove
the outcome of radiotherapy in a rat fiborosarcoma m(ie| et al. 2018)

Finally, ultrasounehctivated microbubbles promote convection and induce acoustic
radiation forcesAs such, closer contact with the tumor endothelial and an extended contact
time can be obtaed (Kilroy, et al. 2014) Furthermore, these forces may counteract the
elevated interstitial pressure present in tun{&@ggen, et al. 2014, LeRanks, et al. 2016,

Xiao, et al. 2019)

Apart from their ability to improve the tumor uptake, microbubbles can be used as

ultrasoundresponsive drug carriers to reduce thetafiget effects of chemotherapeutics. By

loading the drugs or drugpntaining nanoparticles directly in or onto the microbubbles, a



503 spatial and temporal control of drug release can be obtained, thereby reducingestgother
504 parts of the bodg¥an, et al. 2013, Snipstad, et al. 20Mbdreover, several studies have shown
505 improved anticancer effects from treatment with dragupled microbubbles, compared to a
506 co-administation approact{Burke, et al. 2014, Snipstad, et al. 2Q1A&dditionally, tumor
507 neovasculaturexpresss specific surfacereceptorshat can be targeted by specific ligands.
508 Adding such targeting moieties to the surface of (doagled) microbubbles improves site
509 targeted delivery and has shown to potentiate this effect fuiBaey, et al. 2016, Xig, et al.
510 2016, Luo, et al. 2017)

511 Phaseshifting droplets and gastabilizing solid agentse(g. nanocups) have the unique
512 ability to benefit from both EPRPHGLDWHG DFFXPXODWLRQ LQ WKH pOF
513 vasculature due to their small sizes, as well@sa ultrasounednducedpermeabilization of the
514 tissue structur€Zhou 2015, Myers, et al. 2016, Liu, et al. 2018b, Zhang, et al. 28&8§ral
515 research groups have reported tumor regression after treatment with acotestipadly
516 droplets(Gupta, et al. 2015%an Wamel, et al. 2016, Caat,al. 2018, Liu, et al. 2018b) gas
517 stabilizing solid particleéMin, et al. 2016, Myers, et al. 201@) different approach to the use
518 of droplets for tumor treatment, is Acoustic Cluster Therapy (BCWhich is based on
519 microbubbledroplet clusters that upon ultrasound exposure, undergo & phdsto create
520 large bubbles that can transiently block capillag&sntum, et al. 2015While the mechanism
521 behind the technique is not yet fully understood, studies have shown improved delivery and
522 efficacy of paclitaxel and Abraxafién xenograft prostate tumor moddisan Wamel, et al.
523 2016, Kotopoulis, et al. 20L7Another use of droplets for tumor treatmenenhanced high
524 intensity focused ultrasound (HIFediated heating of tumo(Kopechek, et al. 2014)

525 Although microbubbléaseddrug delivery to solid tumorshows great promise, it also
526 faces important challenges. The ultrasound parameters usedvivo studies highly vary

527 between research groups and no consensus was found on the oscillation regime that is believed



528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

to be responsible for the observed effééang, et al. 2015d, Snipstad, et al. 20M09reover,
longer ultrasound pulses and increased exposure times are usually applied in compiarison to
vitro reports(Roovers, et al. 2019cJ his could promote additional effects such as microbubble
clustering and microbubble translation, which could cause local damage to the surrounding
tissue as wel{Roovers, et al. 2019aJo elucidate theseffects further, fundamentat vitro
research remains important. Therefareyelin vitro models thamore accuratelynimic the
complexity of thein vivo tumor environmenare currently beingxplored. Park et a(2016)
engineered a perfusable vesspla-chip system and reported successful doxorubicin delivery
to the endothelial cells lining this microvascular network. While such microfluidic chips could
be extremely useful to dy the interactions of microbubbles with the endothelial cell barrier,
special care to the material of the chambers should be taken to avoid ultrasound reflections and
standing wave¢Beekers, et al. 2018RAlternatively, 3D tumor spheroids have been used to
study the effects of ultrasound and microbubddsisted drug delivery on penetration and
therapeutic effect in a multicellular tumor mo@Rbovers, et al. 2019bApart from expanding

the knowledge on microbubbtessue interactions in detailed parametric stustiestro, it will

be crucial to obtain improved control over the microbubble behaviaivo, and link this to

the therapeutic effects. To this end,g@s cavitation detection (PCD) to monitor microbubble
cavitation behavior in redlme is currently under development, and could provide better
insights in the futuréChoi, et al. 2014, Graham, et al. 2014, Haworth, et al. 2@tfoyts are
beingcommitted toconstructing custorbuilt delivery systems, which can be equipped with
multiple transducers allowing drug deliveguided by ultrasound imaging and/or PCD

(Escoffre, et al. 2013, Choi, et al. 2014, Wang, et al. 2015c, Paris, et al. 2018)

Clinical studies

Pancreatic cancer
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The safety and therapeutic potential of improved chemotherapeutic drug delivery using
microbubblesand ultrasound was first investigated for the treatment of inoperable pancreatic
ductal adenocarcinoma at Haukeland University Hospital, Nofiatopoulis, et al. 2013,
Dimcevski, et al. 2016)In this clinical trial, gemcitabine was administrated by intravenous
injection over 30 min. During the last 10 min of chemotherapy, an abdominal echography was
performed to locate the position of pancreatic tumor. At the end of chemotherapy, 0.5 mL of
SanoVue® microbubbles followed by 5 mL saline were intravenously injected every 3.5 min
to ensure their presence throughout the whole sonoporation treatment. Pancreatic tumors were
exposed to ultrasound (1.9 MHz, M1 0.2, 1% DC) using a 4C curvilinear pgibéeiéalthcare)
connected to an LOGIQ 9 clinical ultrasound scanner. The cumulative ultrasound exposure
was only 18.9 sAll clinical data showed that microbubbteediated gemcitabine delivery did
not induce any serious adverse events in comparison to thenayoy alone. At the same time,
tumor size and development were characterized according to the Response Evaluation Criteria
in Solid Tumors (RECIST) criteria. In additidBastern Cooperative Oncology GrqigCOG
performance status was used to moniterttierapeutic efficacy of the microbubfreediated
gemcitabine delivery. All ten patients tolerated an increased number of gemcitabine cycles
compared tdreatmentvith chemotherapy alorfeom historical control$8.3 r6vs13.8 r5.6
cycles;p < 0.008),thus reflecting an improved physical state. After 12 treatment cycles, one
SDWLHQWTV W XfBldQRdéceaSR B Hu@orsize. This patient was excluded from this
clinical trial to be treated with radiotherapy and then with pancreatectomy. In five tart
patients, the maximum tumor diameter was partially decreased from the first to last therapeutic
treatment. Subsequently, a consolidative radiotherapy or a FOLFIRINOX treatment, a bolus
and infusion of Hluorouracil, leucovorin, irinotecan, and oxdatin, was offered to them. The
median survival was significantly increased from 8.9 months to 17.6 mgnth<.0001).

Altogether, these results show that the drug delivery using cliniapjpyoved microbubbles,
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chemotherapeutics, and ultrasound isistble and compatible with respect to clinical
procedures. Nevertheless, the authors did not provide any evidence that the improved
therapeutic efficacy of gemcitabine was related to an increase in intratumoral bioavailability
of the drug. In addition, theffects of microbubblassisted ultrasound treatment alone on the
tumor growth were not investigated while recent publications describe that according to the
ultrasound parameters, such treatment could induce a significant decrease in tumor volume

throudh a reductiorin tumor perfusion as described above.

Hepatic metastases from digestive system

A safety study of chemotherapeutic delivery using microbulbsésted ultrasound for the
treatment of liver metastases from gastrointestinal tumors and panaaatinoma was
conducted at Beijing Cancer Hospital, Chif\@ang, et al. 2018)Thirty minutes after
intravenous infusion of chemotherapy (for both monotherapy and combination therapy), 1 mL
of SonoVué& microbubbles was intravenously administrated which was repeated anogher f
times in 20 min. An ultrasound probe (Glabdominal convex probe; GE Healthcare, USA)
was positioned on the tumor lesion which was exposed to ultrasound at different Mls (0.4 to
1) in contrast mode using a LogiQ E9 scanner (GE Healthcare, USA).irfeypaims of this
clinical trial were to evaluate the safety of this therapeutic procedure and to explore the largest
MI and ultrasound treatment time which cancer patients can tolerate. According to the clinical
safety evaluation, all twelve patients sieal no serious adverse events. The authors reported
that the microbubble mediat@thiemotherapy led to fever in two patients. However, there is no
clear evidence this related to the microbubble and ultrasound treatment. Indeed, in the absence
of direct comprison of these results with a historical group of patients receiving the
chemotherapy on its own, one cannot rule out a direct link between the fever and the

chemotherapy alone. All the adverse side effects were resolved with symptomatic medication.
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In addition, the severity of side effects did n@brsenwith increases in MI, suggesting that
microbubblemediated chemotherapy is a safe procedure. The secondary aims were to assess
the efficacy of this therapeutic protocol using conteagtanced CT and MRThus, tumor

size and development were characterized according to the RECIST criteria. Half of the patients
had stable disease and one patient obtained a partial response after the first treatment cycle.
The median progressidree survival was 91 days. Mever, making any comparison and
interpretation of results is very difficult because none of the patients were treated with the same
chemotherapeutics, MI, and/or number of treatment cycles. The results of safety and efficacy
evaluations should be comparedoatients receiving the chemotherapy on its own in order to
clearly identify the therapeutic benefit obmbining with ultrasoundriven microbubbles

Similar to the pancreatic clinical study, no direct evidend enhanced therapeutic
bioavailability d the chemotherapeutic drug after the treatmems provided This
investigation is all the more important as the ultrasound and microbubble treatment was applied
30 min after intravenous chemotherapy (for both monotherapy and combination therapy)

indepenently of drug pharmacokinetics and metabolism.

Ongoing and upcoming clinical trials

Currently, two clinical trials are ongoing: (i) Prof. F. Kiessling (RWTH Aachen University,
Germany) proposes to examine whether the exposure of early primary breast toance
microbubbleassisted ultrasound during neoadjuvant chemotherapy results in increased tumor
regression in comparison to ultrasound treatment alone (NCT03385200); (ii) Dr. J. Eisenbrey
(Sidney Kimmel Cancer Center, Thomas Jefferson University, USA)vissiigating the
therapeutic potential of perflutren protégype A microspheres in combination with

microbubbleassisted ultrasound in radioembolization therapy of liver cancer (NCT03199274).



627 A proof of concept study (NCT03458975) has been set in Touspitdy France for

628 treating norresectable liver metastases. The aim of this trial is to perform a feasibility study
629 with the development of a dedicated ultrasound imaging and delivery probe with a therapy
630 protocol optimized for patients with hepatic mésses of colorectal cancer and who are
631 eligible for monoclonal antibodies in combination with chemotherapy. A dedicated 1.5D
632 ultrasound probe has been developed and interconnected to a modified A¥ptaging

633 platform (Supersonic imagine, Aen-Provence, France). The primary objective of the study
634 is to determine the rate of objective response at two months for lesions receiving optimized
635 and targeted delivery of systemic chemotherapy combining lmwaab and FOLFIRI

636 compared with those treated with only systemic chemotherapy regimen. The secondary
637 objective is to determine the safety and tolerability of this local approach of optimized
638 intratumoral drug delivery during the three months of follgpyby assessing tumor necrosis,

639 tumor vascularity and pharmacokinetics of bevacizumalbsupdofiling cytokineexpression

640 spatially

641
642 IMMUNOTHERAPY

643 Cancer immunotherapy is considered to be one of the most promising strategies to eradicate
644 cancerasitmAlHV XVH RI WKH SDWLHQWITV RZQ LPPXQH V\VWHP
645 tumor cells. It is a common name that refers to a variety of strategies that aim to unleash the
646 power of the immune system by either boosting antitumoral immune responses imgflagg

647 tumor cells to make them more visible to the immune system. The principle is based on the
648 fact that tumors express specific tumor antigens which are not, or to a much lesser extent,
649 expressed by normal somatic cells &eticecanbe used to initiate @ancerspecific immune

650 response. In this section we aimdive insight intohow microbubbles and ultrasound have
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been applied as useful tools to initiate or sustain different types of cancer immunotherapy as
illustrated in Figures.

When RalphSteinman(Steinman, et al. 197@)scovered the dendritic cell (DC) in 1973,
its central role in the initiation of immunitynade itan attractivetarget to evoke specific
antitumoral immune responses. Indeed, these cells very efficiently capture antigens and present
them to Flymphocytes itmajor histocompatibility complexes (MHCSs), thereby bridging the
innate and adaptive imume system. More specifically, exogenous antigens enguidetthe
endolysosomal pathway are largely presented to *CD4cells via MHC-Il, whereas
endogenous, cytoplasmic proteins are shuttled to NMiH®Ilecules for presentation to CD8
cells. As such, either CD4elper T cells or CD8cytotoxic T cell responses are induced. The
understanding of this pivotal role played by DCs formed the basis fébd3€d vaccination,
ZKHUH D SDWLHQWYV '&V é&UWidoth YR@M WiHoGNtigefRsGahd Le¢d G
administered as a cellular vaccine. {b&sed therapeutics, however, suffer from a number of
challenges, of which the expensive and lengtkyivoprocedure for antigetoading and
activation of DCs is the most promine(antos and Butterfield 2018In this regard,
microbubbles have been investigateddirect delivery otumor antigens to immune cells
vivo. Bioley et al (2015)showed that intact microbubbles are rapidly phagocytosed by both
murine and human DCs, resulting in rapid and efficient uptake rédcgcoupled antigens
without the use of ultrasound. Subcutaneous injection of microbubbles loaded with the model
antigen ovalbumin (OVA) resulted in the activation of both CRBd CD4 T cells.
Effectively, these Icell responses could partially protectccinated mice against an OVA
expressing Listeria infection. Dewitte et @2014)investigated a different approach, making
use of messenger RNA (mMRNA) loaded microbublbl@sbinedwith ultrasound to transfect
DCs. As such, they were able to deliver mRNA encoding both tumor antgengll as

immunomodulating molecules directly to the cytoplasm of the DCs. As a result, preferential



676 presentation of antigen fragments in Mi€omplexes was ensured, favoring the induction of
677 CD8" cytotoxic T cells. In a therapeutic vaccination studynice bearing OVAexpressing

678 tumors, injection of MRNAsonoporated DCs caused a pronounced slowdown of tumor growth
679 and induced complete tumor regression in 30% of the vaccinated animals. Interestingly, in
680 humans, intradermally injected microbubbles hasenbused as sentinel lymph node detectors
681 as they can easily drain from peripheral sites to the afferent lymph (fele=r, et al. 20123,

682 Sever, et al. 2012b)Since lymph nodes are the primary sites of immune induction, the
683 interaction of microbubbles with intranodal DCs, could be of higheval o this end, Dewitte

684 et al. (2015) showed that mRNAoaded microbubbles were able to rapidly and efficiently
685 migrae to the afferent lymph nodes after intradermal injection in healthy dodsrtunately,

686 furthertranslation of this concept to amvivosetting is not straightforwaya@s it prompts the

687 use of less accessible large animal modelg.(pigs, dogs)Indeed, conversely to what has

688 been reported in humans, lymphatic drainage of subcutaneously injected microbubbles is very
689 limited in the small animal models typically used in preclinical resganate and rats)which

690 is the result of substantial differee in lymphatic physiology.

691 Another strategy in cancer immunotherapy is adoptive cell therapy, véxendvo

692 manipulated immune effector cells, mainly T cells and NK (natural killer) cells, are employed
693 to generate a robust and selective anticancer iremespons€Yee 2018, Hu, et al. 2019)

694 These strategies have mainly led to successes in hematological malignancies, not only because
695 of the availability ofselective target antigens, but also because of the accessibility of the
696 malignant cell{Khalil, et al. 2016, Yee 2018By contrast, in solid tumors, and especially in

697 brain cancers, inadequate homing of cytotoxic T cells KrcHlls to the tumor proved to be

698 one of the main reasons for the low success rates, making the degree of tumor infiltration an
699 important factor in disease progno&hilds and Carlsten 2015, Gras Navarro, et al. 2015, Yee

700 2018) To address this, focused ultrasound and microbubbles have been osda: tumors
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more accessibletcellular therapiesThefirst demonstration of this concept was provided by
Alkins et al.(2013)who used a xenograft HER-expressing breast cancer brain metastasis
model to determine whether ultrasound and microbubbles could allow intravenously infused
NK cells to cross the bloebrain barrier (BBB). By loading the NK cellsvith
superparamagnetic iron oxide (SPI1O) nanoparticles, the accumulation of NK cells in the brain
could be tracked and quantifieth MRI. An enhanced accumulation of NK cells was found
when the cells were injected immediately prior to BBB disruption.ohtamtly NK cells
retained their activity and ultrasound treatment resulted in a sufficient NK to tumor cell ratio
to allow effective tumor cell killingAlkins, et al. 2016)In contrast, very few NK cells reached

the tumor site when BBB disruption was absent or performed before NK cell infusion.
Although it is not known for certawhy timing had such a significant impact on NK
extravasation, its likely that the most effective transfer to the tissue occurs at the time of
insonification, and that the barrier is most open during this Meety, et al. 2012)Possible
otherexplanations include the difference in size of the temporal BBB openings or a possible
alternation in the expssion of specific leukocyte adhesion molecules by the BBB disruption,
thus facilitating the translocation of NK celilso for tumors where BBB crossing is not an
issue, ultrasound has been used to improve delivery of cellular therapeutics. Sta Miria et
(2015) demonstrated enhanced tumor infiltration of adoptively transferred NK cells after
treatment with microbubbles and low dose focused ultrasoundrdugwas confirmed by
Yanget al.(2019a)in a more recent plibation where the homing of NK cells was more than
doubled after microbubble injection and ultrasound treatment of an ovarian tumor. Despite the
enhanced accumulation, however, the authors did not observe an improved therapeutic effect,
which might be dueto the limited number of treatments that were applied, or the
immunosuppressive tumor microenvironment that counteracts the cytotoxic action of the NK

cells.
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There is growing interest in exploring the effect of microbubbles and ultrasound on the
tumor micgoenvironmentas recent work has shown that BBB disruption with microbubbles
and ultrasound mawduce sterile inflammatim Although a strong inflammatory response may
be detrimental in the case of drug delivery across the BBB, it might be interesturthey
study this inflammatory response in solid tumors as it might induce the release of damage
associated molecular patterns (DAMPS) such as-dtemik proteins and inflammatory
cytokines. This could shift the balance towards a more inflammatory migroement that
could promote immunotherapeutic approaches. As reported st Biu(2012)exposure of a
CT26 colon carcinoma xenograft to microbubbles and low pressure pulsed ultrasound
increased cytokine release and triggered lymphocyte infiltration. Similar data kave b
reported by Hunget al. (2015) In their study, ultrasound treatment caused a complete shut
down of tumor vasculature followed by the expression of-HIF K\ S Rndubible factor

D PDUNHU RI WXPRU LVFKHPLD DQG WXPRU QHFURVLYV
Similar responses have been reported following thermal and mechanical HIFU treatments of
solid tumors(Unga and Hashida 2014, Silvestrini, et al. 20X }letailed review of ablative
ultrasound therapies is howevaut of the scope of this review.

At present, the most successful form of immunotherapy is the administration of monoclonal
antibodies to inhibit regulatory immune checkpoints that block T cell action. Examples are
CTLA-4 (cytotoxic T lymphocytessociatd proteird) and PBL (programmed cell death),
which act as brakes on the immune system. Blocking the effect of these brakes can revive and
support the function of immune effector cells. Despite the numerous successes achieved with
checkpoint inhibitorsresponses have been quite heterogeneous as the success of checkpoint
inhibition therapy largely depends on the presence of intratumoral effector T\telkser
2017) This motivated Bulner et al2019) to explore the synergy of microbubble and

ultrasound treatment with RDL checkpoint inhibition therapy in mice. Tumors in the



751 treatment group that received the combination of microbubble and ultrasound treatment with
752  checlpoint inhibition were significantly smaller than tumors in the monotherapy groups. One
753 mouse showed complete tumor regression and remained tumor free upon rechallenge,
754 indicative of an adaptive immune respanse

755 Overall, the number of studies that inveatrgythe impact of microbubble and ultrasound

756 treatment on immunotherapy is limited, making this a rather unexplored research area. It is
757 obvious that more hdepth research is warranted to improve our understanding on how
758 (various types of) immunotherapyight benefit from (various types of) ultrasound treatment.

759

760 BLOOD BRAIN BARRIER (BBB) AND BLOOD SPINAL CORD BARRIER (BSCB)

761 OPENING

762 The barriers of the central nervous system (CNS), the BByaoh Barrier (BBB) and

763 Blood-Spinal Cord Barrier (BSCB), greatlymit drugbasedtreatnent of CNS disorders.

764 These barriers help to regulate the specialized CNS environment by limiting the passage of
765 most therapeutically relevant molecul@ardridge 2005)Although several methods have

766 been proposed to circumvent the BBB and BSCB, including wardisruption and the

767 development of molecules engineered to capitalize on reee@diated transport (stalled

768 Trojan Horse molecules), the use of ultrasound in combination with microbublylegnen,

769 etal. 2001pr droplets(Wu, et al. 2018)o transiently modulate these barribess come to the

770 forefront in recent years due to the &teyl nature of this approach and its ability to facilitate
771 delivery of a wide range of currently available therapeutigsst demonstrated in 2001

772 (Hynynen, et al. 2001)ultrasounemediated BBB opening has been the topic of several
773 hundred original research articles in the last two degadnd in recent years has made
774 headlines forgrounctEUHDNLQJ FOLQLFDO WULDOV WDUJHWdsQJ EUDL

775 described below in the clinical studies section



776

777 Mechanisms, Bioeffects, and Safety

778 Ultrasound in combination with microbubblean producepermeability changes in the

779 BBB via both enhanced paracellular and transcellular tranEplogikov, et al. 2004, Sheikov,

780 et al. 2006)Reduction and reorganization of tight junction protédiseikov, et al. 200&nd

781 upregulation of active transportgtein Caveolial (Deng, et al. 2012have been reported.

782  Although the exact physical mechanisms driving these changes are not known, there are several
783 factors that are hypothesized to contribute to these effects, including direct tensile stresses due
784  to the expansion ancontraction of the bubbles in the lumen, as well as shear stresses at the
785 vessel wall arising from acoustic microstreaming. Recent studies have also investigated the
786 suppression of efflux transporters following ultrasound exposure with microbubbles. A
787 reduction in Rglycoprotein expressioiCho, et al. 2016, Aryal, et al. 201dhd BBB

788 transporter gene expressivicMahon, et & 2018) has been observed by multiple groups.

789 One study showed thatdPycoprotein expression was suppressed for over 48 h following
790 treatmentwith ultrasound and microbubblggryal, et al. 2017) However, the degree of

791 inhibition of efflux transporters as a result of udwand with microbubbles may be insufficient

792 to prevent efflux of some therapeut{&outal, et al. 2018)and thus this mechanism requires

793  further study.

794 Many studies have documented enhanCétb tumor response following ultrasound and

795 microbubblemediated delivery of drugs across the BldadnorBarrier in rodent models.

796 Improved survival has been shown in both priym@&hen, et al. 2010, Aryal, et al. 2018)d

797 metastatic tumor mode(Park, et al. 2012, Alkins, et al. 2016)

798 Beyond simply enhancing drug accumulation in the CNS, several positive bioeffects of
799 ultrasound and microbubble induced BBB opgnhave beemeported In rodent models of

800 $O]KHLPHUYV GLVHDVH QXPHURXV SRVLWLYH HIIHFWV



801 exogenous therapeutics. These effects include a reduction in amyl8i® D T X(Bbr@ae, BtG

802 al. 2013, Burgess, et al. 2014, Leinenga and Go6tz 2015, Poon, et al. r2&@i&}ion in tau

803 pathology(Pandit, et al. 2019and improvements in spatial memdBurgess, et al. 2014,

804 Leinenga and Gotz 2015)wo-photon microscopy has shown that amyoidSODTXH VL]H L
805 reduced in transgenic mice for up to tweeks post ultrasound and microbubble treatment
806 (Poon, et al. 2018)Opening of the BBB in both transgenic and wiyge mice has also

807 revealed enhanced neurogendBiargess, et al. 2014, Scarcelli, et al. 2014, Mooney, et al.
808 2016)in the treated tissue.

809 Gene delivery to the CNS using ultrasound and microbuliblesother area that is

810 increasingly being investigated. Virghlonso, et al. 2013, Wang, et al. 201%imd nonviral

811 (Mead, et al. 2016)elivery methods have been investigated. While early studies demashstrate
812 the feasibility of gene delivery using reporter geff@s example Thevenot et.a2012)

813 Alonso et al (2013), there fave been promising results delivering therapeutic genes. In
814 SDUWLFXODU DGYDQFHV KDYH EHHQ PDGH LQ 3DUNLQVRQT
815 have been testedead, et al. 2017, Xhima, et al. 2018nd where long lasting functional

816 improvements have been reported in response to th@vegagd, et al. 2017)t is expected that

817 research into this highly promisitgchnique will expand to a range of therapeutic applications.
818 Despite excellent safety profiles in rboman primate studies investigating repeat opening
819 of the BBB(McDannold, et al. 2012, Downs, et al. 201there has been recent controversy

820 due to reports of a sterileflammatory response observed in (&isvacs, et al. 2017a, Kovacs,

821 etal. 2017Db, Silburt, et al. 201 Mhe inflammatoy response is proportional to the magnitude

822 of BBB opening and is therefore strongly influenced by experimental conditions such as
823 microbubble dose and acoustic settirdgwever, McMahon and Hynyné2017)showed that

824 when clinical microbubble doses are used, and treatment exposures are actively controlled to

825 avoid over treating, the inflammatory response is acute and mild. They note that while chronic
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inflammation is undesirable, acute inflammation may actually conéritbteitsome of the
positive bioeffects that have been observed. For example, the clearanogat following
ultrasound and microbubble treatmesthought to be mediated in part by microglial activation
(Jordéo, et al. 2013)These findings reiterate the need for carefully controlled teatm

exposures to select for desired bioeffects.

Cavitation Monitoring and Control

It is generally accepted that the behavior of the microbubbles in the ultrasound field is
predictive, to an extent, of the observed bioeffects. In the seminal study osstzeaton
between cavitation and BBB opening, McDannold gt28l06)observed an increase in second
harmonic emissions in cases of successful opening, compared to exposures that lead to no
observable changes in permeability as measured by contrast enhanced MRI. Further, they noted
that successful opening could &ehieved in the absence of inertial cavitation, whvelsalso
reported byamother group(Tung, et al. 2010)These general guidelines have been central to
the development of active treatment control scheinashave been developed to datall
with the common goal of promoting stable bubble oscillations, while avoiding violent bubble
collapse that can lead to tissue damage. These methods are based either on detection of sub or
ultraharmonic(O'Reilly and Hynynen 2012, Tsai, et al. 2016, Bing, et al. 20d&monic
bubble emission@rvanitis, et al. 2012, Sun, et al. 20Dbr)a combination there@Kamimura,
etal. 2019) $Q DSSURDFK EDVHG RQ WKH VXE XOWUDKDUPRQLF |
Hynynen(2012)has been employed in earlyrgtal testingLipsman, et al. 2018, Mainprize,
et al. 2019)

Control methods presented to date have generally been developed using single receiver
elements, which simplifies data processing but does not allow signals to be localized. Focused

receivers are spatially selectibeit can miss offarget events, while planar receivers may



851 (generate false positigdased on signals originating outside the treatment volume. The solution
852 to this is to use an array of receivers and passive beamforming methods, combined with phase
853 corredion methods to compensate for the skull b@omes, et al. 2013, 201t6)generate maps

854  of bubble activity. Irthe brain this has been achieved with linear arfapganitis, et al. 2013,

855 Yang, et al. 2019¢)which suffer from poor axial resolution when using passive imaging
856 methods, as well as largeale sparse hemispherical or large aperture receiver E'&elly,

857 et al. 2014, Deng, et al. 2016, Crake, et al. 2018, Jones, et al. 2018, Liu, et al.tRatl8a)
858 optimize spatial resolution for a given frequency. Recently, this has extended beyond just
859 imaging the bubble activity to incorporate réiate, active feedback control based on both the
860 spectral and spial information obtained from the bubble mgpenes, et al. 2018Figure4).

861 Robust control methods building on these works kel essential for widespread adoption of
862 this technology to ensure safe and consistent treatments.

863

864 BSCB opening

865 Despite the similarities between the BBB and BSCB, and the great potential benefit for
866 patients, there has been limited work investigatingsiegion of this technology tine spinal

867 cord. Opening of the BSCB in rats was first reported by Wachsmuth @08P) and was

868 followed by studies from Webekdrien et al.(2015) Payne et ak2017) DQG 2Y5HLOO\ HW
869 (2018)in rats (Figureés) and from Montero et a{2019)in rabbits, the latter performed through

870 D ODPLQHFWRP\ ZLQGRZ ,Q(2018) presebtedl tteChirstHeVidebc® of a

871 therapeutic benefit in a disease model, showing improved tumor control in a rat model of
872 leptomeningeal metastases.

873 Although promising, there remains significant work to be done to advance BSfoBgp

874 to clinical studies. A more thorough characterization of the bioeffects in the spinal cord and

875 how, if at all, they differ from the brain is necessary to ensure safe translation. Additionally,
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methods and devices capable of delivering controlle@iyeio the spinal cord at clinical scale

are needed. While laminectomy and implantation of an ultrasound {®océero, et al. 2019)

might be an appropriate approach for some focal indications, treating multifocal or diffuse
disease wilrequire the ultrasound to be delivered through the intact bone to the narrow spinal
FDQDO )OHWFK@8hay&epragehtdd ant@thod to suppress standing waves in the
human vertebral canal. Combined with devices suited to the spinal geometry, such as that

SUHVHQWHG E\ ;RODI)BGesehethdds Wi help to advance clinical translation.

Clinical studies

The feasibility of enhancing BBB permeatyilin and around brain tumors using ultrasound
and microbubbles has now been demonstrated in two clinical tndlse study conducted at
Assistance Publiqu#iopitaux de Paris in Paris, Francey anfocused 1 MHz ultrasound
transducer (SonoCloffjilwas sirgically placed over the tumoesection area and permanently
fixed into the hole in the skull bone. The skin was placed over the transducer and after healing
treatments were conducted by inserting a needle probe through the skin to provide the driving
signal to the transducer. Monthly treatments were then conducted while infusing a
chemotherapeutic agent into the blood stream (carboplatin). The sonication was executed
during infusion of SonoVifemicrobubbles. A constant pulsed sonication was appliesgluri
each treatment followed by a contrast enhanced MRI to estimate BBB permeability. The power
was escalated for each monthly treatment until enhancement was detected TrhigRiudy
demonstrated feasibility and saf¢Garpentier, et al. 201@nd a follow up study may indicate
increase in survivglldbaih, et al. 2019)

The second brain tumor studyas conducted at Sunnybrook Health Sciences Centre in
Toronto, Canadavhichused the InSightec Exablate 220 kHz device and thrskgh MRI

guided sonications of brain tumors prior to theggal resection. It also showéakefeasibility
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of inducing highly localized BBB permeability enhancement, safety, and that
chemotherapeutic concentration in the sonicated peritumor tissue was higher than in the
unsonicated tissu@Mainprize, et al. 2019)

Another study conducted in Alzheim@Visdase patients with the Exablate device
demonstrated safe BBB permeability enhancement and that the treatment could be repeated
one month later without any imaging or behavior indications of adess#gLipsman, et al.

2018) A third study with the same device investigatedfé@esbility of usng functional MRI

to target motor cortex in Amyotrophic Lateral Sclerosis (ALS) patients again showing precisely
targeted BBB permeability enhancement without adverse effects in thesteledtructure
(Abrahao, et al. 2019l of these studies were conducted using Deffhityicrobubbles.

These studies have led to the current ongoing brain tumor trial with six monthly treatments of
the brain tssue surrounding the resection cavity during the maintenance phase of the treatment
with temozolomide. This study sponsored by InSightedasg conducted in multiple
institutions. Similarly, a phase Il trial in AlzheimgMsdase sonicating the hippogans with

the goal of investigating the safety and potential benefits from repeated (three treatments with
two-week interval) BBB permeability enhancement alone is ongoing. This study isedthgp

conducted in several institutions that have the device.

SONOTHROMBOLYSIS

Occlusion of blood flow through diseased vasculature is caused by thrombi, blood clots
which form in the body. Due to limitations in thrombolytic efficacy and speed,
sonothrombolysis, ultrasound which accelerates thrombus breakdownaloneombination
with thrombolytic drugsnd/or cavitation nuclehas been under extensive investigation in the
last two decade@ader, et al. 2016 50nothrombolysis promotes thrombus dissolution for the

treatment of strokéAlexandrov, et al. 2004a, Alexandrov, et al. 2004b, Molina, et al. 2006,
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Chen, et al. 2019)myocardial infarction(Mathias, et al. 2016, Mathias, et al. 2019,
Slikkerveer, et al. 2019)gcute peripheral arterial occlusi@Bbben, et al. 2017)eep ein
thrombosigShi, et al. 2018)and pulmonary ebolism (Dumantepe, et al. 2014, Engelberger

and Kucher 2014, Lee, et al. 2017)

Mechanisms, Agents, and Approaches

Ultrasound improvesecombinant tissue plasminogen adira(rt-PA) diffusion into
thrombi and augments lysis primarilyasacoustic radiation force and streamifi2atta, et al.
2006, Prokop, et al. 200Petit, et al. 2015)Additionally, ultrasound increases-RA and
plasminogen penetration into the thrombus surface and enhances removal of fibrin degradation
products via ultrasonic bubble activity, or acoustic cavitation, that induces microstreaming
(Elder 1958, Datta, et al. 2006, Sutton, et al. 20T&)p types of cavitation are correlated with
enhanced thrombolysistable cavitation, with highly nonlinear bubble motion resulting in
acoustic emissions at the subharmonic and ultraharmonics of the fundamenéaidygglynn
1964, Phelps and Leighton 1997, Bader and Holland 2C48) inertial cavitation, with
substantial radial bubble growth and rapid collapse generating broadband acoustic emissions
(Carstensen and Flynn 1982, Flynn 1982)

Specialized contrast agents and tailored ultrasound schemes have been investigated
the aim ofoptimizing sonothrombolysis. Petit et §2015)observed a greater degree ePA
lysis with BR38 microbubbles exposed toMHz pulsed ultrasound at an amplitude causing
inertial cavitation (1.3VPa peak rarefactional pressure) than at a lower amplitude causing
stable cavitation (0.381Pa peak rareifctional pressure). Goyal et 2017)also measured a
higher degree of thrombolysis withMHz pulsed ultrasound at 1MPa peak rarefactional
pressure with inertial cavitation than at OMBa peak rarefactional pressure with stable

cavitation in ann vitro model of microvascular obstruction using perflumrtanefilled, lipid



951 shelled microbubble@Veller, et al. 20023s a nucleation agent. However, Kleven ef24119)

952 observed more than 60% fractional clot widttss for highly retracted human whole blood
953 clots exposed to+4RA, Definity® and 220 kHz pulsed or continuous wave (CW) ultrasound at
954 an acoustic output with sustained stable cavitation throughout theifioaton periods

955 (0.22MPa peak rarefactionar@ssure) (Figuré).

956 Echogenic liposomes loaded with-RA enhanced lysis compared tePA alone at

957 concentrations of 1.58 and 3.afgy/mL (Shekhar, et al. 201,73uggesting that encapsulation
958 of rt-PA could reduce the -RA dose by a factor of two with equivalent Iytic activity.
959 Subsequently it has been demonstrated that these liposomes prB#eetgainst degradation

960 by plasminogenactivator inhibitorl (PAI1), while achieving equivalent thrombolytic
961 efficacy relative to HPA, Definity®, and intermittent 22RHz CW ultrasoundShekhar, et al.

962 2019) Promising agents, including a nanoscale (< A®) contrast ageniBrussler, et al.

963 2018) and magnetically targeted microbubbl@3e Saint Victor, et al. 2019)have also

964 demonstrated enhanceeRA thrombolysisn vitro. All of these investigtors noted that in the

965 absence of +PA, the combination of ultrasound and microbubbles did not degrade the fibrin
966 network.

967 Several minimally invasive techniques have also been explored, with or without the
968 inclusion of rtPA or exogenousavitation nucle In the clinical management of stroke, rapid
%69 WUHDWPHQWY DUH QHHGHG EHFDXVH RI WKH QHXURORJLYV
970 options that promote fast clot removal, reduce edema and intracerebral bleeding, and improve
971 patient outcomes are of imense value. Magnetic resonance imggeled high intensity

972 focused ultrasound has been investigated for the treatment of both is¢Bengess, et al.

973 2012)and hemorrhagi@Vonteith, et al. 20133troke, and Zafar et gR019)have provided an

974 excellent review of the literature for this approach. Histotripsy, a form of high intensity focused

975 ultrasound that relies on the mechanical action ofebiubble clouds to ablate thrombi with
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and without HPA (Maxwell, et al. 2009, Bader, et al. 2015, Zhang, et al. 2016b, Bader, et al.
2019)is under development to treat deep vein thrombosis. Additionally, ultrasmoeterated
catheterdirected thrombolysis using the EKOS system (EKOS/BTG, Bothell, WA, USA)
combines 2MHz low-intensity pulsed ultrasound andRA without cavitation nucleito
improve lytic efficiency to treat deep vein thrombogghi, et al. 2018)yand pulmonary

embolism(Garcia 2015)

Cavitation monitoring

Acoustic cavitation has been shown to mediate direct fibrinofygesss, et al. 2013nd
accelerated +PA lysis (Everbach and Francis 2000, Datta, et al. 2006, Prokop, et al. 2007,
Hitchcock, et al. 2011 Passive and active cavitation detection techniques have been developed
to monitor acoustic cavitatiofiRoy, et al. 1990, Madanshetty, et al. 1991, Bader, et al. 2015)
Passive cavitatiommaging, or passive acoustic mapping, employs a transducer array that
listens passively (i.e., no transmit) to emissions from acoustically activated microbubbles
(Salgaonkar, et al. 2009, Gyongy and Coussios 2010, Havedrdd, 2017) Vignon et al.
(2013) developed a prototype array enabling spectral analysis of bubble activity for
sonothrombolysis applications. Superharmonic Doppler effects have also been utilized to
monitor buble activity from 500 kHz pulsed therapeutic ultraso@Rduliopoulos and Choi
2016) Both a linear arragArvanitis and McDannold 2013a, Arvanitis, et al. 2013, Arvanitis
and McDannold 2013band a sparse hemispherical ar(Agconcia, et al. 201Mave been
integrated into a clinical magnetiesonance imagguided high intensity focused ultrasound

system to assess microbubble dynamics during sonothrombolysis in the brain.

Preclinical studies
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Information gathered from animal studies can help inform human clinical trials, despite a
strong spees dependence of clotiA lytic susceptibilityGabriel, et al. 1992, Flight, et al.
2006, Huang, et al. 2017A comprehensive systematic evaluation ofirl&ivo preclinical
sonothrombolysis studies was carried out by Auboire ef2@ll8) summarizing treatment
efficacy and safety outcomes in models of ischemic stroke. Since that review was published,
the efficacy of sonothrombolysis using nitrogen microbubbles stabilized with a non
crosslinked shell delivered inteaterially through a catheter aneRA delivered intravenously

has been demonstrated in a rat model of ischemic <fioken, et al. 2019)

Clinical studies

A rich literature exists of clinical trials exploring the safety and efficacy of
sonothrombolysis. Two recent metaalyses osevenrandomized controlled trialChen, et
al. 2019, Zafar, et al. 2013ktempt to determine whether the administration ¢tAtand
ultrasound improve outcomes in uae ischemic stroke. Both analyses conclude that
sonothrombolysis significantly enhances complete or partial recanalization, with improved
neurologic function (assessed via the National Institutes of Health Stroke Scale, NIHSS). An
ongoing clinical trial TRUST; NCT03519737) will determine whether large vessel occlusions
can be recanalized with sonothrombolysis (Cerevast Medical, Inc., Bothell, WA, USA) and
PA, tenecteplase or alteplag€ampbell, et al. 2018yhile patients are transferred to a stroke
center for mechanical thrombectorftyauberti 2019)

Several clinical trials have shown that high MI pulsed diagnostic ultrasound exposure of
Definity® before and after percutaneous coronary intervention for ST elevation myocardial
infarction can prevent microvascular obstruction and improve functional outddadésas,
et al. 2016, Mathias, et al. 2019, Slikkerveer, et al. 204 8ystematic review of 16 catheter

directed sonothrombolysis clinical trials comprised mostly of retrospective case series using
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the EKOS system withouhicrobubble infusions determined that this treatment modality is
safe and promising for the treatment of deep vein thrombosis(BNiTet al. 2018) However,

a largesample randomized prospective clinical trial is needed to improve the clinical evidence
for use as a frodtne therapy for DVT. In retsspective studies in patients with pulmonary
embolism Lee et al(2017) conclude that catheter directed sonothrombolysis is safe and
decreases righgided heart strain, bi&chissler et ali2018)conclude that this therapy is not
associated with a reduction in mortality nor increased resolution of right ventricular
dysfunction. And finally, an ongoing trial in a small cohort of 20 patients with acute peripheral
arterial occlusion¢Ebben, et al. 2017yill determine whether Luminify/(marketed in the US

as Defirity®) and 1.8 MHz transdermal diagnostic ultrasound with intermittent high Ml (1.08)
and low MI (0.11) for visualization of the microbubbles and flow will improve recanalization.
In summary, sonothrombolysis has demonstrated clinical benefit in the in¢athaeute and
chronic thrombotic disease. Ultrasodasskisted thrombolysis has a potential role as an
emerging viable and therapeutic option for future management of stroke and cardiovascular

disease.

CARDIOVASCULAR DRUG DELIVERY AND THERAPY

In cadiovascular drug delivery, cavitation nuclei are-amministered or loaded with
different therapeutics for the treatment of various diseases. For atherosclerosis treatment in an
ApoE-deficient mouse model, intercellular adhesion moleduleargeted microlables
carrying angiogenesis inhibitor Endostar were udaghn, et al. 2018)Upon intermittent
insonification over the abdominal and thoracic cavitghwl MHz ultrasound (2 W/ctn
intensity, 50% duty cycle) for 30 s with two repeats and another treatment 48 h later, plaque
area and intraplaque neovascularization were significantly reduced two weeks after treatment.

Percutaneous coronary interventionoféen used to restore blood flow in atherosclerotic
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arteries. The treatment of coronary microembolization, a complication of percutaneous
coronary intervention, was demonstrated in pigated withultrasound (1 MHz, 2.0 W/ct
intensity, 10 s on and 10oéf, 20 min duration) and microRN21-loaded microbubbles four

days before coronary microembolizati@u, et al. 2015)This resulted inmimproved cardiac
dysfunction. Although not a therapeutic study, Liu et (2D15) did show that plasmid
transfection to the myocardium was significantly larger when the microbubbles were
administered into the coronary artery compared to intravenously via the ear vein in pigs even
though the intracoronary microbubble dosas half of the intravenous dose (1 MHz
ultrasound, 2 W/ci 50% duty cycle, 20 min duration). Percutaneous coronary intervention
can also result in neointimal formation which induces restenosis. Sireloadsd
microbubbles were shown to reduce neointifoamation in coronary arteries by 50% in pigs,

see Figure 7, 28 days after angioplasty in combination with a mechanically rotating
intravascular ultrasound catheter (5 MHz, 500 cycles, 50% duty cycle, 0.6 MPa peak negative
pressure)(Kilroy, et al. 2015) Another research group showed that paclitaloelded
microbubbles and ultrasound (1 MHz, 1.5 MPa for 10 s) can also significantly inhibit
neointimal formation in the iliac artery in rabbits one week after percutaneous coronary
intervention(Zhu, et al. 2016)

In diabetic cardiomyopathy, microbubbigediated delivery of fibroblast growth factor has
shown therapeutic effects. Zhao e{2016)could prevent diabetic cardiomyopathy in rats by
treating the heart with ultrasound (14 MHz, 7.1 MPa for 10 s, three repeats with off interval of
1 s) and microbubbles eaaministered with acidic fibroblast growth factor nanoparticles twice
weekly for 12 consecutive weeks. In already established diabetic cardiomyopathy in rats, the
same investigators eamdministered basic fibroblast growth factmntaining nanoparticles
with microbubbles with the same ultrasound treatment, albeit that it was given three times with

one day in between treatments. At four weeks after treatment, this resulted in restored cardiac
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functions as a result of structural remodeling of the cardiaceti€8ao, et al. 2014)
Microbubbles loaded with acidic fibroblast growth factor in combination with ultrasound (14
MHz, 7.1 MPa for 10 s, threeepeats with off interval of 1 s) also showed significantly
improved cardiac function in a rat model of diabetic cardiomyopathy. Treatment was
performed twice weekly for 12 consecutive we€Kkang, et al. 2016a)-or doxorubicin
induced cardiomyopathy, repeated-amministration of microbubbles and nanopatrticles
containing acidic fibroblast growth factor in combinatiorthmltrasound (14 MHz, 7.1 MPa
for 10 s, three repeats with off interval of 1 s) applied at the heart successfully prevented
doxorubicin induced cardiomyopathy in rgi&an, et al. 2017)Once doxorubicin induced
cardiomyopathy had occurred, microbubbiediated reversal of cardiomyopathy was shown
by the delivey of survivin plasmid to cardiomyocytes and endothelial ek, et al. 2014)
or glucagoHrike peptidel (GLP-1) to cardiomyocytes, endothelial cells, vascular muscle cells,
and mesenchymal cell€hen, et al. 2015 rats. The ultrasound settings were 5 MHz (120 V
power, pulsing interval of 10 cardiac cyck#sendsystole) for a 5 min treatmefitee, et al.
2014)or not specifiedChen, et al. 2015)The microbubblemedated gene therapy study by
Chen et al(2016)showed that ANGPTL8 gene therapy does not need to be done in the heart
to reverse doxorubicin inted cardiomyopathy in rats as their microbubble and ultrasound
(1.3 MHz, 1.4 MPa peak negative pressure, four bursts triggered to every fousiisénid
using a delay of 430 ms of the peak of the R wave) therapy was done in the liver (90 s
treatment).This resulted in overexpression of ANGPTLS8 in liver cells and blood which
stimulated cardiac progenitor cells in the epicardium.

A few dozen articles have been published treating myocardial infarction with
microbubble and ultrasourdediated gene dekvy in vivo, in mouse, rat, rabbit, and dog
models. These are reviewed by Qian et (28018) Amongst these are a few targeted

microbubble studies which all show that the targeted microbubbles induced higher degrees of
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gene transfection, increased myocardial vascular density, and improved cardiac function in
comparison to nortargeted microbubbles. This improvement occurred independent of the type
of ligand on the microbubble, the gene that was transfected, or the animal model: matrix
metalloproteinase 2 target with Timp3 gene in (&@n, et al. 2014)intracellular adhesion
moleculel target with Ag-1 gene in rabbit§Deng, et al. 2015)P-selectin target with
hVEGF165 gene in ra{Shentu, et al. 2018WItrasound settings for these studies were similar

at 1.6 MHz (1.6 MPa peak negative pressure, pulsing interval of four cardiac cycles) for 20
min during infusion of the plasmildaded microbubbles (both Yan et@014)and Shentu et

al. (2018), or 1.7 MHz (1.7 MPa peak negative pressure, pulsing interval every four to eight
cardiac cycles) for 5 min after bolus injection of the plasio@tled microbbbles(Deng, et

al. 2015)

Other gene therapy studies for vascular disease inctirdelating angiogenesis for the
treatment of chronic hindlimb ischemia in rats using +hi#-3p-loaded microbubbles and
ultrasound (1.3 MHz, 2.1 MPa peak negative acoustic pressure, pulsing interval 5 s). The
treatment lasted for 20 min of which microbigsowere infused for 10 min and resulted in
improved perfusion, vessel density, arteriolar formation, and neovessel mat(Cainret al.

2015) Recently, successful gene therapy was demonstrated in baboons where Vascular
Endothelial Growth Factor (VEGH)lasmid loaded microbubbles were infused and ultrasound
(2-6 MHz, MI 1.9, repeated 5 s burst pulses with three bursts per minute) was appliéd fo

min on days 25, 35, 45, and 55 of gestation with the transducer placed over the placental basal
plate(Babischln, et al. 2019) This was a mechanistic study elucidating the role of VEGF in
uterine artery remodeling.

The gas core of the cavitation nuclei can also be the therapeutic. Suttof2@i4)have
shown that ultrasounchediated (1 MHz, 0.34 MPa acoustic pressure, 30 cycle pulse, 50 s

treatment) nitric oxide gas delivery froethogenidiposomes toex vivoperfused porcine
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carotid arteries induces potent vasorelaxation. The vasodialative @figittic oxideloaded
echogenic liposomes upon insonification (5.7 MHz, 0.36 MPa peak negative pressure, 30 s
treatment) was also shown ex vivo perfused rabbit carotid arteries with arterial wall
penetration of nitric oxide confirmed by fluorescenceenmscopy(Kim, et al. 2014) In
addition to this, vasodialative effects were demonstrated in carotid artevies in rats with
vasospasms following subarachnoid hemorrhage usmMf4 ultrasound with 0.3 MPa peak
to-peak pressure, 50% duty cycle for a duration of 40 min with constant infusion of the
echogenic liposomes. This resulted in improved neurological function (limb placement, beam
and grid walking)Kim, et al. 2014) Ultrasoundactivation of the antioxidant hydrogen gas
encapsulated in microbubbles was shown to prevent myocardial iseregaréusion injury in

rats when administered before reperfugida, et al. 2017)There was a dosgependent effect

as 2 x 18° microbubbles resulted in a more significant reduction iartfsize (70%) than 4

x 10° microbubbles (39%) compared to vehitieated rats. Furthermore, treatment with the
high dose hydrogemicrobubbles prevented changes in left ventriculardiadtolic and left
ventricular enesystolic dimension as well as nmmal reductions in ejection fraction and
fractional shortening. Histological and ELISA analysis showed a reduced degree of myocardial
necrosis, apoptosis, hemorrhaging, inflammation, and oxidant damage. At the same time that
cardiovascular drug delivery dntherapy using microbubbles and ultrasound is moving
forward to large animal and clinical studies, sophisticatettro models are being used and/or
developed for mechanistic studies, such as flow chambers (uSlides, (®indijnout, et al.
2015)and perfused 3D microvascular netwofksang, et al. 2019 which human umbilical

vein enathelial cells are grown.

Clinical study
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Microbubbles and ultrasound were clinically investigated to augment muscle blood flow in
12 patients with stable sickle cell disease in the absence of a drug at the Oregon Health &
Science University, Portland, Qen, USA(Belcik, et al. 2017)Perfusion increased -2ld
in the forearm flexor muscles upon Defiffitypfusion and insonification at 1.3 MHz (Ml 1.3).
Ultrasound was applied 3 times for 3 min with ~5 min intervals. The change in perfusion was
determined from contrast enhanced ultrasbimaging and extended well beyond the region
where ultrasound was applied. This study showed that the therapeutic ultrasound settings
directly translate from mouse to man for superficial muscles, as the same investigators
demonstrated augmented bloodaflo ischemic and neischemic hindlimb muscles in mice
in the same study and an earlier publicatiBelcik, et al. 2015)However, for the preclinical

studies custormade microbubbles were used instead of Defthity

SONOBACTERICIDE

Sonobactericide has been defined as the use of ultrasound in the presence of cavitation
nuclei for the enhancement of bactericidal acflattwein, et al. 2018)This topc has recently
gained attention with 17 papers being published in the last five years. Research on ukrasound
mediated enhancement of antimicrobials has focused on several sources of infections including
general medical devicgRonan, et al. 2016, Dong, et al.120 Dong, et al. 2018, Hu, et al.
2018, Fu, et al. 2019xcne(Liao, et al. 2017)chronic bacterial prostatiti&i, et al. 2016)
infective endocarditigLattwein, et al. 2018)pneumonigSugiyama, et al. 2018prosthetic
joint infections(Li, et al. 2015, Lin, et al. 2015, Guo, et al. 2017a, Zhou, et al. 20d8jinary
tract infectios(Horsley, et al. 2019However, there was no specific disease aim in tuaies
(Zhu, et al. 2014, Gqghet al. 2015)One group targeted membrane biofouling forewand
wastewater industrig®\garwal, et al. 2014)Direct bacterial killing, biofilm degradation and

dispersal, and increased or synergistic therapeutic eHeeiss of antimicrobials have been
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reported as the therapeutic effects of sonobactericide. These studies show that sonobactericide
can be applied to treat Gram+ or Grabacteria, when they are planktonic, associated with a
surface and embedded in biofilor intracellular. The majority of these studies were carried
outin vitro. However, seven were performedvivoin either micgLi, et al. 2015, Liao, et al.

2017, Sugiyama, et al. 2018, Zhou, et al. 20185(Yi, et al. 2016) or rabbits(Lin, et al.

2015, Dong, et al. 2018Bo0nobactericide was mostly performed withactninistration of
antimicrobials. Investigators also employed an antimicrobial encapsulated in liposomes that
were conjugated to the microbubb(ekorsley, et al. 2019pr the antimicrobial lysozyme was

a microbubble coatinf-iao, et al. 2017)or did not use antimicrobials altogetiidgarwal, et

al. 2014, Goh, et al. 2015, Yi, et al. 2018 extensive review of sonobactericide has been
published recently by Lattwein et §2019) Although sonobactericide is an emerging strategy

to treat bacterial infections with intriguing potential, the mechanism and the safety of the
treatment should be explored, particularly regarding biofilm degradationigpershl. Future

studies should also focus on maximizing the efficacy of sonobacteincske.

FUTURE PERSPECTIVES AND CONCLUSIONS

Therapeutic ultrasound technology is experiencing a paradigm shiérnms of both
technical developments and clinical applications. In additiotstomherent advantageer
imaging (e.g., real timenature portability and low cost), ultrasound in combination with
cavitation nucleis underexplomtion as a drug delivery modalityThe results from several
preclinical studies have alreadgmonstratethe potential of ultrasouresponsiveavitation
nuclei to deliver multiple types ofdrugs {ncluding model drugs,anticancer, therapeutic
antibodies, genes, nanoparticles, egffjciently in various tumor modelsncluding both
ectopic and orthotopic model®r immunotherapy, brain disease, to promote the dissolution

of clots, and in the treatment of cardiovascular disease and bacterial infections
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Based on these encouraging pirechl data,severalklinical trials have been initiateathd
others arg@lanned However, whilst animal studies provigeoof of conceptand impetus for
clinical studies, careful attention must be giventhieir relevance in human disease; in
particular, the applicability otherapeutic protocols, and appropriate ultrasound settings.
Otherwisewerisk underestimating the therapeutic effects and potetgiaterious side effects
The elucidation of all ahe interactions between cavitation nucteells and drugs will help
to address this need. The biggest challenges lie in the large differences in timescales between
the cavitation nuclei, drug release and uptake, and the biological response (Figuxe 8).
multidisciplinary approach is needed to tackle these challenges integrating expertise in physics,
biophysics, biology, chemistry, and pharmacology.

Custommademicrobubbles which serve as cavitation nuclei are often used for ultrasound
mediated drug deery studies. An advantage is full control over the payload, as well as the
disease target. At the same time, falkoustical characteation and steriity of the
microbubbles must be considered during translation to human studies, which often requires
approval from the United States Food and Drug Administration (FDA) or other similar federal
agencies in Europe and Asia. As an example, for gene therapy, will each different type of
genetic material loaded onto microbubbles need such approval, or wdks @ cationic
microbubbles be approved regardless of the specific genefdrhher path would hinder fast
clinical translation. For now, eadministration of drugs with FDApproved ultrasound
contrast agents is being explored in clinical triajsart from applicationsn the brain ongoing
clinical studies evaluatingnicrobubblemediated drug delivery are based on standard clinical
ultrasound scanners operating mostly in Doppler mode. In order to promote the progress of this
emerging technology, it isevy important to design and implement specific therapeutic
ultrasound pulse sequences that might be vastly different from clinical diagnostic imaging

output. Clinical scanners can indeed be modified to be able to generate drug delivery protocols.



1224 In a simlar way that elastographyrequireslong ultrasoundpulses to generate the push
1225 sequencefDeffieux, et al. 2009) ultrasoundscannes can be modified to be able to transmit
1226 drug deliveryultrasoundsequencesvith tailoredand optimized parameterpulseduration

1227 duty cycle andcenterfrequency.

1228 Ultimately, ultrasound imagguided drug delivery andhe monitoring of treatment

1229 response could be feasible with the same equipment. Additionally, with recent developments
1230 in ultrasound imaging technologylitrasoundmediated therapy could be plannagplied and

1231 monitored in a rapid sequence with high spatial and temporal resolution. The use of a single
1232 imaging and therapy device would alleviate the need faegtstration because the imaging

1233 equipment would also be used to induce lzeal therapyensuring a perfect elocation.

1234 Nonetheless, a compromise between efficacy and safety remains a major challenge for
1235 successful clinical applications of this dual methodology, which combinesimeaimag

1236 guidance of therapeutic delivery.

1237 In conclusion, ultrasouncesponsivemicrobubbles which serve a@swvitation nuclei are

1238 Dbeing used to treat a wide variety of diseaged show great potential preclinically and
1239 clinically. The elucidation of the cavitation nuclecell interaction andhe implementation

1240 of drug delivery ultrasound sequences on clinical ultrasound scanners are expected to
1241 invigorate clinical studies.
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FIGURE CAPTIONS LIST

Figure 1. Combined effect of nonlinear propagation and focusing of the harmonics in a
perfluoropentanenicrometersizeddroplet. The emitted ultrasound wave has a frequency of
3.5 MHz and a focus at 3.81 cm, and the radius of the droplet is 10 um for ease of observation.
The pressures are given on the axis of the droplet along the propagating direction of the
ultrasound wee, and the shaded area indicates the location of the droplet (reprinted with

permission from Sphak et 42014).
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Figure 2. Ultrasoundactivated microbubbles can locally alter the tumor microenvironment
through four mechanisms: enhanced permeability, improved contdate hypoxia, and

altered perfusion.

Figure 3. Schematic overview of how microbubbles and ultrasound have been shown to

contribute to cancer immunotherapy. From left to right: microbubbles can be used as antigen
carriers to stimulate antigen uptake bydietic cells. Microbubbles and ultrasound can alter

the permeability of tumors thereby increasing the intratumoral penetration of adoptively

transferred immune cells or checkpoint inhibitors. Finally, exposing tissues to cavitating

microbubbles can inducserile inflammation by the local release of DAMPS.

Figure 4. 3D transcranial subharmonic microbubble imaging and treatment contrieb in

rabbit brain during BBB opening. Spectral information (top) shows the appearance of

subharmonic activity at 35 s into the treatment. Passive mapping of the subharmonic band

localizes this activity to the target region. Scale bar indicates 2.5 mm (reprinted (adapted) with

permission from Jones et §2018).

Figure 5. T1 weighted sagittal MRmages showing leptomeningeal tumors in rat spinal cord

JUH\ DUURZKHDGYVY EHIRUH XOWUDVRXQGxDQG PLFUREXE
enhancement of the cord indicating BSCB opening (white arrows) Y&W UDV R X QG xD
microbubble treatment (right €@ X P Q UHSULQWHG DGDSWHG ZLWK SHU

al. (2018).
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Figure 6. Simulated acoustic pressure and temperature in a representative subject exposed to
pulsed 22(kHz ultrasound with &83.3% duty cycle. The absolute pealkpeak pressure
maximum for the simulations is displayed in gray scale. Temperature is displayed using a heat
map with a minimum color priority write threshold of@. Computed tomography features

such as bone (cyamgkin and internal epithelium (beige), and clot (green), are plotted using
contour lines. The transducer is outlined in magenta. Constructive interference is prominent in
the soft tissue between the temporal bone and the transducer. Some constructreringerf

is also present in the brain tissue close to the contralateral temporal bone, however, the pressure
in this region did not exceed the pressure in the M1 section of the middle cerebral artery.
Temperature rise was prominent in the ipsilateral borengalthe transducer axis.

Computational model is described in Kleven e{20.19)

Figure 7. Histological sectioa of a coronary artery of @ig 28 days after angioplasty. Pigs
were treated with sirolimu®aded microbubblesnly (a) or sirolimudoaded microbubbles
and ultrasound (b) usingmaechanically rotating intravascular ultrasound catheter (5 MHz, 500
cycles, 50% duty cycle, 0.6 MPa peak negative pressilireatment withultrasound and
sirolimusloaded microbubbleseducel neointimal formation by 50%In both sections the
intima (1) and media (M) are outlined; scale bar is 500 (BRaprinted by permission from
Springer NatureSpringer,Annals of Biomedical Engineerineducing Neointima
Formation in a Swine Model with IVUS and Sirolimus Microbubbles, Kilroy JP, Dhanaliwala

AH, Klibanov AL, Bowles DK, Wamhoff BR, Hossack JA, COPYRIGKZD15).

Figure 8. Different time scales of the therapeutic effects of ultrasoundcawitiationnuclei

treatment. [C&]; = intracellular calcium; ROS = reactive oxygen species; ATP = adenosine



2249 triphosphate; EV = extracellular vesicl@geprinted (adapted) with permission from Lattwein

2250 et al.(2019).
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