K. Achilles, A. Okabe, M. Ikeda, C. Shimizu-okabe, J. Yamada et al., Kinetic properties of cl uptake mediated by na+-dependent K+-2Cl cotransport in immature rat neocortical neurons, Journal of Neuroscience, vol.27, pp.8616-8627, 2007.

M. Anstö-tz, K. E. Cosgrove, I. Hack, E. Mugnaini, G. Maccaferri et al., Morphology, input-output relations and synaptic connectivity of Cajal-Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice, Brain Structure and Function, vol.219, pp.2119-2139, 2014.

M. Anstö-tz, H. Huang, I. Marchionni, I. Haumann, G. Maccaferri et al., Developmental profile, morphology, and synaptic connectivity of Cajal-Retzius cells in the postnatal mouse Hippocampus, Cerebral Cortex, vol.26, pp.855-872, 2016.

M. Anstö-tz, S. K. Lee, T. I. Neblett, G. M. Rune, and G. Maccaferri, Experience-Dependent regulation of Cajal-Retzius cell networks in the developing and adult mouse Hippocampus, Cerebral Cortex, vol.28, pp.672-687, 2018.

M. Barber, Y. Arai, Y. Morishita, L. Vigier, F. Causeret et al., Migration speed of Cajal-Retzius cells modulated by vesicular trafficking controls the size of Higher-Order cortical Areas, Current Biology, vol.25, pp.2466-2478, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01266802

M. Barber and A. Pierani, Tangential migration of glutamatergic neurons and cortical patterning during development: lessons from Cajal-Retzius cells, Developmental Neurobiology, vol.76, pp.847-881, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01318440

F. Bielle, A. Griveau, N. Narboux-nê-me, S. Vigneau, M. Sigrist et al., Multiple origins of Cajal-Retzius cells at the borders of the developing pallium, Nature Neuroscience, vol.8, pp.1002-1012, 2005.

O. Blanquie, W. Kilb, A. Sinning, and H. J. Luhmann, Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex, Neuroscience, vol.358, pp.190-200, 2017.

O. Blanquie, L. Liebmann, C. A. Hü-bner, H. J. Luhmann, and A. Sinning, NKCC1-Mediated GABAergic signaling promotes postnatal cell death in neocortical Cajal-Retzius cells, Cerebral Cortex, vol.27, pp.1644-1659, 2017.

F. Causeret, E. Coppola, and A. Pierani, Cortical developmental death: selected to survive or fated to die, Current Opinion in Neurobiology, vol.53, pp.35-42, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01799906

J. Chen and A. R. Kriegstein, A GABAergic projection from the zona incerta to cortex promotes cortical neuron development, Science, vol.350, pp.554-558, 2015.

L. A. Cocas, G. Fernandez, M. Barch, J. Doll, Z. Diaz et al., Cell Type-Specific circuit mapping reveals the presynaptic connectivity of developing cortical circuits, Journal of Neuroscience, vol.36, pp.3378-3390, 2016.

R. Cossart, The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function, Current Opinion in Neurobiology, vol.21, pp.160-168, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01848218

C. A. De-frutos, G. Bouvier, Y. Arai, M. S. Thion, L. Lokmane et al., Reallocation of olfactory Cajal-Retzius cells shapes neocortex architecture, Neuron, vol.92, pp.435-448, 2016.

D. R?-o, J. A. Heimrich, B. Supè-r, H. , B. V?-ctor et al., Differential survival of Cajal-Retzius Cells in Organotypic Cultures of Hippocampus and Neocortex, The Journal of Neuroscience, vol.16, pp.6896-6907, 1996.

Y. Fuchs and H. Steller, Programmed cell death in animal development and disease, Cell, vol.147, pp.742-758, 2011.

A. Griveau, U. Borello, F. Causeret, F. Tissir, N. Boggetto et al., A novel role for Dbx1-derived Cajal-Retzius cells in early regionalization of the cerebral cortical neuroepithelium, PLOS Biology, vol.8, p.1000440, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509911

S. Hippenmeyer, E. Vrieseling, M. Sigrist, T. Portmann, C. Laengle et al., A developmental switch in the response of DRG neurons to ETS transcription factor signaling, PLOS Biology, vol.3, p.159, 2005.

K. Ishii, K. I. Kubo, and K. Nakajima, Reelin and neuropsychiatric disorders, Frontiers in Cellular Neuroscience, vol.10, p.229, 2016.

G. B. Keller and M. Td, Predictive processing: a canonical cortical computation, Neuron, vol.100, pp.424-435, 2018.

A. G. Khan and S. B. Hofer, Contextual signals in visual cortex, Current Opinion in Neurobiology, vol.52, pp.131-138, 2018.

W. Kilb and H. J. Luhmann, Spontaneous GABAergic postsynaptic currents in Cajal-Retzius cells in neonatal rat cerebral cortex, European Journal of Neuroscience, vol.13, pp.1387-1390, 2001.

S. Kirischuk, H. J. Luhmann, and W. Kilb, Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century, Neuroscience, vol.275, pp.33-46, 2014.

K. Kirmse, A. Dvorzhak, C. Henneberger, R. Grantyn, and S. Kirischuk, Cajal retzius cells in the mouse neocortex receive two types of pre-and postsynaptically distinct GABAergic inputs, The Journal of Physiology, vol.585, pp.881-895, 2007.

S. N. Kolbaev, K. Achilles, H. J. Luhmann, and W. Kilb, Effect of depolarizing GABA(A)-mediated membrane responses on excitability of Cajal-Retzius cells in the immature rat neocortex, Journal of Neurophysiology, vol.106, pp.2034-2044, 2011.

C. O. Lacefield, E. A. Pnevmatikakis, L. Paninski, and R. M. Bruno, Reinforcement learning recruits somata and apical dendrites across layers of primary sensory cortex, Cell Reports, vol.26, 2000.

F. Ledonne, D. Orduz, J. Mercier, L. Vigier, E. A. Grove et al., Targeted inactivation of bax reveals a Subtype-Specific mechanism of Cajal-Retzius neuron death in the postnatal cerebral cortex, Cell Reports, vol.17, pp.3133-3141, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01496445

A. Louvi, M. Yoshida, and E. A. Grove, The derivatives of the Wnt3a lineage in the central nervous system, The Journal of Comparative Neurology, vol.504, pp.550-569, 2007.

H. J. Luhmann, Cellular Migration and Formation of Neuronal Connections: Comprehensive Developmental Neuroscience, pp.843-856, 2013.

H. J. Luhmann and R. Khazipov, Neuronal activity patterns in the developing barrel cortex, Neuroscience, vol.368, pp.256-267, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01963813

L. Madisen, T. A. Zwingman, S. M. Sunkin, S. W. Oh, H. A. Zariwala et al., A robust and high-throughput cre reporting and characterization system for the whole mouse brain, Nature Neuroscience, vol.13, pp.133-140, 2010.

J. M. Mienville, Persistent depolarizing action of GABA in rat Cajal-Retzius cells, The Journal of Physiology, vol.512, pp.809-817, 1998.

J. M. Mienville and C. Pesold, Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death, The Journal of Neuroscience, vol.19, pp.1636-1646, 1999.

V. Moreno-juan, A. Filipchuk, N. Antó-n-bolañ-os, C. Mezzera, H. Gezelius et al., Prenatal thalamic waves regulate cortical area size prior to sensory processing, Nature Communications, vol.8, p.14172, 2017.

O. Myakhar, P. Unichenko, and S. Kirischuk, GABAergic projections from the subplate to Cajal-Retzius cells in the neocortex, NeuroReport, vol.22, pp.525-529, 2011.

D. Orduz, P. P. Maldonado, M. Balia, M. Vé-lez-fort, V. De-sars et al., Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex, vol.4, p.6953, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02302602

S. Pangratz-fuehrer and S. Hestrin, Synaptogenesis of electrical and GABAergic synapses of fast-spiking inhibitory neurons in the neocortex, Journal of Neuroscience, vol.31, pp.10767-10775, 2011.

E. Pozas, S. Paco, E. Soriano, and F. Aguado, Cajal-Retzius cells fail to trigger the developmental expression of the cl-extruding co-transporter KCC2, Brain Research, vol.1239, pp.85-91, 2008.

G. Quattrocolo and G. Maccaferri, Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse Hippocampus, Journal of Neuroscience, vol.34, pp.13018-13032, 2014.

G. Radnikow, D. Feldmeyer, and J. Lü-bke, Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius Cells in the Developing Rat Neocortex, The Journal of Neuroscience, vol.22, pp.6908-6919, 2002.

J. S. Rothman and R. A. Silver, NeuroMatic: an integrated Open-Source software toolkit for acquisition, analysis and simulation of electrophysiological data, Frontiers in Neuroinformatics, vol.12, p.14, 2018.

B. A. Sava, C. S. Dá-vid, A. Teissier, A. Pierani, J. F. Staiger et al., Electrophysiological and morphological properties of Cajal-Retzius cells with different ontogenetic origins, Neuroscience, vol.167, pp.724-734, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00488071

T. H. Schwartz, D. Rabinowitz, V. Unni, V. S. Kumar, D. K. Smetters et al., Networks of coactive neurons in developing layer 1, Neuron, vol.20, pp.80993-81002, 1998.

T. Soda, R. Nakashima, D. Watanabe, K. Nakajima, I. Pastan et al., Segregation and coactivation of developing neocortical layer 1 neurons, The Journal of Neuroscience, vol.23, pp.6272-6279, 2003.

L. Sun, R. Chen, Y. Bai, J. Li, Q. Wu et al., Morphological and physiological characteristics of Ebf2-EGFP-Expressing Cajal-Retzius cells in developing mouse neocortex, Cerebral Cortex, vol.29, pp.3864-3878, 2019.

O. Takeuchi, J. Fisher, H. Suh, H. Harada, B. A. Malynn et al., Essential role of BAX,BAK in B cell homeostasis and prevention of autoimmune disease, PNAS, vol.102, pp.11272-11277, 2005.

F. Tissir, A. Ravni, Y. Achouri, D. Riethmacher, G. Meyer et al., DeltaNp73 regulates neuronal survival in vivo, PNAS, vol.106, pp.16871-16876, 2009.

L. E. Williams and A. Holtmaat, Higher-Order thalamocortical inputs gate synaptic Long-Term potentiation via disinhibition, Neuron, vol.101, pp.91-102, 2019.

F. K. Wong and O. Marín, Developmental cell death in the cerebral cortex, Annual Review of Cell and Developmental Biology, vol.35, pp.523-542, 2019.

M. Yoshida, S. Assimacopoulos, K. R. Jones, and E. A. Grove, Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order, Development, vol.133, pp.537-545, 2006.

W. Zhang and R. M. Bruno, High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs, vol.8, p.44158, 2019.