M. A. Kutzler and D. B. Weiner, DNA vaccines: ready for prime time?, Nat Rev Genet, vol.9, pp.776-788, 2008.

S. Lu, S. Wang, and J. M. Grimes-serrano, Current progress of DNA vaccine studies in humans, Expert Rev Vaccines, vol.7, pp.175-191, 2008.

D. J. Laddy, Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens, PLoS One, vol.3, p.2517, 2008.

V. Blazevic, Induction of human immunodeficiency virus type-1-specific immunity with a novel gene transport unit (GTU)-MultiHIV DNA vaccine, AIDS Res Hum Retroviruses, vol.22, pp.667-677, 2006.

W. Zhou, Multiple RNA splicing and the presence of cryptic RNA splice donor and acceptor sites may contribute to low expression levels and poor immunogenicity of potential DNA vaccines containing the env gene of equine infectious anemia virus (EIAV), Vet Microbiol, vol.88, pp.127-151, 2002.

A. Sajadian, Comparing the effect of Toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine, Arch Virol, vol.159, pp.1951-1960, 2014.

D. H. Barouch, Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF, J Immunol, vol.168, pp.562-568, 2002.

E. Okada, Intranasal immunization of a DNA vaccine with IL-12-and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens, J Immunol, vol.159, pp.3638-3647, 1997.

W. R. Weiss, A plasmid encoding murine granulocyte-macrophage colony-stimulating factor increases protection conferred by a malaria DNA vaccine, J Immunol, vol.161, pp.2325-2332, 1998.

M. Parsania, Evaluation of apoptotic and anti-apoptotic genes on efficacy of DNA vaccine encoding glycoprotein B of Herpes Simplex Virus type 1, Immunol Lett, vol.128, pp.137-142, 2010.

E. S. Bergmann-leitner, W. W. Leitner, E. H. Duncan, T. Savranskaya, and E. Angov, Molecular adjuvants for malaria DNA vaccines based on the modulation of host-cell apoptosis, Vaccine, vol.27, pp.5700-5708, 2009.

A. Brave, Induction of HIV-1-specific cellular and humoral immune responses following immunization with HIV-DNA adjuvanted with activated apoptotic lymphocytes, Vaccine, vol.28, pp.2080-2087, 2010.

N. Y. Sardesai and D. B. Weiner, Electroporation delivery of DNA vaccines: prospects for success, Curr Opin Immunol, vol.23, pp.421-429, 2011.

J. M. Song, DNA vaccination in the skin using microneedles improves protection against influenza, Mol Ther, vol.20, pp.1472-1480, 2012.

R. Heller, Y. Cruz, L. C. Heller, R. A. Gilbert, and M. J. Jaroszeski, Electrically mediated delivery of plasmid DNA to the skin, using a multielectrode array, Hum Gene Ther, vol.21, pp.357-362, 2010.

A. K. Roos, Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment, PLoS One, vol.4, p.7226, 2009.

J. J. Drabick, J. Glasspool-malone, A. King, and R. W. Malone, Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization, Mol Ther, vol.3, pp.249-255, 2001.

E. Bellard, Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization, J Control Release, vol.163, pp.396-403, 2012.

F. Martinon, Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates, Hum Gene Ther, vol.20, pp.1291-1307, 2009.

M. Pearton, Changes in human Langerhans cells following intradermal injection of influenza virus-like particle vaccines, PLoS One, vol.5, p.12410, 2010.

S. Babiuk, Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin, Mol Ther, vol.8, pp.992-998, 2003.

L. A. Hirao, Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques, Vaccine, vol.26, pp.440-448, 2008.

A. J. Simon, Enhanced in vivo transgene expression and immunogenicity from plasmid vectors following electrostimulation in rodents and primates, Vaccine, vol.26, pp.5202-5209, 2008.

B. Peng, Y. Zhao, L. Xu, and Y. Xu, Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity, Vaccine, vol.25, pp.2064-2073, 2007.

, Scientific RepoRts |, vol.7, p.4122

S. Guo, Electro-gene transfer to skin using a noninvasive multielectrode array, J Control Release, vol.151, pp.256-262, 2011.

S. Guo, A. L. Israel, G. Basu, A. Donate, and R. Heller, Topical gene electrotransfer to the epidermis of hairless guinea pig by noninvasive multielectrode array, PLoS One, vol.8, p.73423, 2013.

C. Liard, Intradermal immunization triggers epidermal Langerhans cell mobilization required for CD8 T-cell immune responses, J Invest Dermatol, vol.132, pp.615-625, 2012.

P. Stoitzner, Tumor immunotherapy by epicutaneous immunization requires langerhans cells, J Immunol, vol.180, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00294265

E. Klechevsky, Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells, Immunity, vol.29, pp.497-510, 2008.

N. Romani, P. M. Brunner, and G. Stingl, Changing views of the role of Langerhans cells, J Invest Dermatol, vol.132, pp.872-881, 2012.

Y. L. Zhao, Induction of cytotoxic T-lymphocytes by electroporation-enhanced needle-free skin immunization, Vaccine, vol.24, pp.1282-1290, 2006.

J. F. Fonteneau, Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells, Blood, vol.102, pp.4448-4455, 2003.

J. Liu, R. Kjeken, I. Mathiesen, and D. H. Barouch, Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation, J Virol, vol.82, pp.5643-5649, 2008.

B. Markelc, In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice, J Membr Biol, vol.245, pp.545-554, 2012.

L. M. Wakim, T. Gebhardt, W. R. Heath, and F. R. Carbone, Cutting edge: local recall responses by memory T cells newly recruited to peripheral nonlymphoid tissues, J Immunol, vol.181, pp.5837-5841, 2008.

L. A. Hirao, Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques, Vaccine, vol.26, pp.3112-3120, 2008.

A. M. Rodriguez, IL-12 and GM-CSF in DNA/MVA immunizations against HIV-1 CRF12_BF Nef induced T-cell responses with an enhanced magnitude, breadth and quality, PLoS One, vol.7, p.37801, 2012.

M. T. Kim and J. T. Harty, Impact of Inflammatory Cytokines on Effector and Memory CD8+ T Cells. Front Immunol, vol.5, p.295, 2014.

C. S. Hsieh, Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages, Science, vol.260, pp.547-549, 1993.

K. Breuhahn, Epidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis, Cell Growth Differ, vol.11, pp.111-121, 2000.

L. S. Miller, TGF-alpha regulates TLR expression and function on epidermal keratinocytes, J Immunol, vol.174, pp.6137-6143, 2005.

M. Baggiolini and I. Clark-lewis, Interleukin-8, a chemotactic and inflammatory cytokine, FEBS Lett, vol.307, pp.97-101, 1992.

M. Cumberbatch, R. J. Dearman, C. Antonopoulos, R. W. Groves, and I. Kimber, Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha-and IL-1beta-dependent mechanism, Immunology, vol.102, pp.323-330, 2001.

M. C. Lebre, Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a Type-1 polarized phenotype in dendritic cells: role of keratinocyte-derived tumor necrosis factor alpha, type I interferons, and interleukin-18, J Invest Dermatol, vol.120, pp.990-997, 2003.

M. Galeano, Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse, Diabetologia, vol.46, pp.546-555, 2003.

C. M. Barbon, In vivo electroporation enhances the potency of poly-lactide co-glycolide (PLG) plasmid DNA immunization, Vaccine, vol.28, pp.7852-7864, 2010.

F. Lin, Optimization of electroporation-enhanced intradermal delivery of DNA vaccine using a minimally invasive surface device, Hum Gene Ther Methods, vol.23, pp.157-168, 2012.

M. Breton and L. M. Mir, Microsecond and nanosecond electric pulses in cancer treatments, Bioelectromagnetics, vol.33, pp.106-123, 2012.

A. C. Depelsenaire, Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity, J Invest Dermatol, vol.134, pp.2361-2370, 2014.

X. Chen, J. Wang, D. Shah, and M. X. Wu, An update on the use of laser technology in skin vaccination, Expert Rev Vaccines, vol.12, pp.1313-1323, 2013.

L. Adam, R. Le-grand, and F. Martinon, Electroporation-mediated intradermal delivery of DNA vaccines in nonhuman primates, Methods Mol Biol, vol.1121, pp.309-313, 2014.

U. R. Hengge, P. S. Walker, and J. C. Vogel, Expression of naked DNA in human, pig, and mouse skin, J Clin Invest, vol.97, pp.2911-2916, 1996.

N. Salabert, Intradermal injection of an anti-Langerin-HIVGag fusion vaccine targets epidermal Langerhans cells in nonhuman primates and can be tracked in vivo, Eur J Immunol, vol.46, pp.689-700, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02437891