G. J. Hurteau, J. A. Carlson, S. D. Spivack, and G. J. Brock, Overexpression of the MicroRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin, Cancer Res, vol.67, pp.7972-7976, 2007.

M. V. Iorio, MicroRNA signatures in human ovarian cancer, Cancer Res, vol.67, pp.8699-8707, 2007.

C. P. Bracken, A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition, Cancer Res, vol.68, pp.7846-7854, 2008.

E. J. Nam, MicroRNA expression profiles in serous ovarian carcinoma, Clin. Cancer Res, vol.14, pp.2690-2695, 2008.

D. R. Cochrane, E. N. Howe, N. S. Spoelstra, and J. K. Richer, Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers, J. Oncol, p.821717, 2010.

D. Iliopoulos, Loss of miR-200 inhibition of Suz12 leads to polycombmediated repression required for the formation and maintenance of cancer stem cells, Mol. Cell, vol.39, pp.761-772, 2010.

B. Mateescu, miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response, Nat. Med, vol.17, pp.1627-1635, 2011.

L. Batista, T. Gruosso, and F. Mechta-grigoriou, Ovarian cancer emerging subtypes: Role of oxidative stress and fibrosis in tumour development and response to treatment, Int. J. Biochem. Cell Biol, vol.45, pp.1092-1098, 2013.

M. Zuberi, Expression of serum miR-200a, miR-200b, and miR-200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features, Clin. Transl. Oncol, vol.17, pp.779-787, 2015.

B. Humphries and C. Yang, The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy, Oncotarget, vol.6, pp.6472-6498, 2015.

U. Burk, A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells, EMBO Rep, vol.9, pp.582-589, 2008.

P. A. Gregory, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nat. Cell Biol, vol.10, pp.593-601, 2008.

M. Korpal, E. S. Lee, G. Hu, and Y. Kang, The miR-200 family inhibits epithelialmesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2, J. Biol. Chem, vol.283, pp.14910-14914, 2008.

S. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2, Genes Dev, vol.22, pp.894-907, 2008.

A. Bendoraite, Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-toepithelial transition, Gynecol. Oncol, vol.116, pp.117-125, 2010.

R. Perdigão-henriques, miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes, Oncogene, 2015.

A. Díaz-lópez, Zeb1 and Snail1 engage miR-200f transcriptional and epigenetic regulation during EMT, Int. J. Cancer, vol.136, pp.62-73, 2015.

C. P. Bracken, Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion, EMBO J, vol.33, pp.2040-2056, 2014.

L. Chen, Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression, Nat. Commun, vol.5, p.5241, 2014.

M. T. Le, miR-200-containing extracellular vesicles promote breast cancer cell metastasis, J. Clin. Invest, vol.124, pp.5109-5128, 2014.

S. A. Mani, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, vol.133, pp.704-715, 2008.

Y. Shimono, Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell, vol.138, pp.592-603, 2009.

U. Wellner, The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs, Nat. Cell Biol, vol.11, pp.1487-1495, 2009.

C. V. Pecot, Tumour angiogenesis regulation by the miR-200 family, Nat. Commun, vol.4, p.2427, 2013.

X. Tang, Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling, Cell Death Differ, 2015.

M. T. Van-jaarsveld, miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells, Oncogene, vol.32, pp.4284-4293, 2013.

A. Costa, A. Scholer-dahirel, and F. Mechta-grigoriou, The role of reactive oxygen species and metabolism on cancer cells and their microenvironment, Semin. Cancer Biol, vol.25, pp.23-32, 2014.

S. R. Filios, MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis, J. Biol. Chem, vol.289, pp.36275-36283, 2014.

A. Magenta, miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition, Cell Death Differ, vol.18, pp.1628-1639, 2011.

S. Xu, Oxidative stress mediated-alterations of the MicroRNA expression profile in mouse hippocampal neurons, Int. J. Mol. Sci, vol.13, pp.16945-16960, 2012.

J. Wei, Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfb1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic, Biol. Med, vol.67, pp.91-102, 2014.

S. K. Wyman, Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries, PLoS ONE, vol.4, p.5311, 2009.

D. Yang, Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer, Cancer Cell, vol.23, pp.186-199, 2013.

Q. Cao, K. Lu, S. Dai, Y. Hu, and W. Fan, Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer, Int. J. Clin. Exp. Pathol, vol.7, pp.2392-2401, 2014.

M. Koutsaki, D. A. Spandidos, and A. Zaravinos, Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics, Cancer Lett, vol.351, pp.173-181, 2014.

B. Vilming-elgaaen, Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker, BMC Cancer, vol.14, p.80, 2014.

S. Brabletz, The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells, EMBO J, vol.30, pp.770-782, 2011.

C. Chang, p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs, Nat. Cell Biol, vol.13, pp.317-323, 2011.

T. Kim, p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2, J. Exp. Med, vol.208, pp.875-883, 2011.

R. Neves, Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells, BMC Res. Notes, vol.3, p.219, 2010.

C. S. Tellez, EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogeninduced transformation of human lung epithelial cells, Cancer Res, vol.71, pp.3087-3097, 2011.

L. Vrba, Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells, PLoS ONE, vol.5, p.8697, 2010.

V. Davalos, Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis, Oncogene, vol.31, pp.2062-2074, 2012.

Y. Lee, MicroRNA genes are transcribed by RNA polymerase II, EMBO J, vol.23, pp.4051-4060, 2004.

X. Zhou, J. Ruan, G. Wang, and W. Zhang, Characterization and identification of MicroRNA core promoters in four model species, PLoS Comput. Biol, vol.3, p.37, 2007.

R. Elkon, A. P. Ugalde, and R. Agami, Alternative cleavage and polyadenylation: extent, regulation and function, Nat. Rev. Genet, vol.14, pp.496-506, 2013.

E. Lieberman-aiden, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, vol.326, pp.289-293, 2009.

T. Sexton, F. Bantignies, and G. Cavalli, Genomic interactions: chromatin loops and gene meeting points in transcriptional regulation, Semin. Cell Dev. Biol, vol.20, pp.849-855, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00430769

E. De-wit and W. De-laat, A decade of 3C technologies: insights into nuclear organization, Genes Dev, vol.26, pp.11-24, 2012.

S. M. Tan-wong, Gene loops enhance transcriptional directionality, Science, vol.338, pp.671-675, 2012.

, The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma, Nature, vol.474, pp.609-615, 2011.

F. Reyal, visualizing chromosomes as transcriptome correlation maps: evidence of chromosomal domains containing co-expressed genes-a study of 130 invasive ductal breast carcinomas, Cancer Res, vol.65, pp.1376-1383, 2005.

D. Banville, R. Stocco, and S. Shen, Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts, Genomics, vol.27, pp.165-173, 1995.

J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing chromosome conformation, Science, vol.295, pp.1306-1311, 2002.

J. Lainé, B. N. Singh, S. Krishnamurthy, and M. Hampsey, A physiological role for gene loops in yeast, Genes Dev, vol.23, pp.2604-2609, 2009.

S. M. Tan-wong, H. D. Wijayatilake, and N. J. Proudfoot, Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex, Genes Dev, vol.23, pp.2610-2624, 2009.

D. O'reilly and D. R. Greaves, Cell-type-specific expression of the human CD68 gene is associated with changes in Pol II phosphorylation and short-range intrachromosomal gene looping, Genomics, vol.90, pp.407-415, 2007.

S. M. Tan-wong, J. D. French, N. J. Proudfoot, and M. A. Brown, Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene, Proc. Natl Acad. Sci. USA, vol.105, pp.5160-5165, 2008.

A. Ansari and M. Hampsey, A role for the CPF 3 0 -end processing machinery in RNAP II-dependent gene looping, Genes Dev, vol.19, pp.2969-2978, 2005.

B. N. Singh and M. Hampsey, A transcription-independent role for TFIIB in gene looping, Mol. Cell, vol.27, pp.806-816, 2007.

M. Morlando, Primary microRNA transcripts are processed co-transcriptionally, Nat. Struct. Mol. Biol, vol.15, pp.902-909, 2008.

F. Krötz, The tyrosine phosphatase, SHP-1, is a negative regulator of endothelial superoxide formation, J. Am. Coll. Cardiol, vol.45, pp.1700-1706, 2005.

S. C. Mok, T. T. Kwok, R. S. Berkowitz, A. J. Barrett, and F. W. Tsui, Overexpression of the protein tyrosine phosphatase, nonreceptor type 6 (ptpn6), in human epithelial ovarian cancer, Gynecol. Oncol, vol.57, pp.299-303, 1995.

H. W. Tsui, K. Hasselblatt, A. Martin, S. C. Mok, and F. W. Tsui, Molecular mechanisms underlying SHP-1 gene expression, Eur. J. Biochem, vol.269, pp.3057-3064, 2002.

C. Wu, M. Sun, L. Liu, and G. W. Zhou, The function of the protein tyrosine phosphatase SHP-1 in cancer, Gene, vol.306, pp.1-12, 2003.

M. K. Jang, The tyrosine phosphatase, SHP-1, is involved in bronchial mucin production during oxidative stress, Biochem. Biophys. Res. Commun, vol.393, pp.137-143, 2010.

J. D. Sharer, The adenine nucleotide translocase type 1 (ANT1): a new factor in mitochondrial disease, IUBMB Life, vol.57, pp.607-614, 2005.

C. M. Snyder, MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration, Development, vol.140, pp.31-42, 2013.

H. Hagège, Quantitative analysis of chromosome conformation capture assays (3C-qPCR), Nat. Protoc, vol.2, pp.1722-1733, 2007.