A. Shinohara, H. Ogawa, and T. Ogawa, Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein, Cell, vol.69, pp.457-470, 1992.

P. Sung, Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein, Science, vol.265, pp.1241-1243, 1994.

P. Baumann, F. E. Benson, and S. C. West, , 1996.

, Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro, Cell, vol.87, pp.757-766

K. Maeshima, K. Morimatsu, and T. Horii, Purification and characterization of XRad51.1 protein, Xenopus RAD51 homologue: recombinant XRad51.1 promotes strand exchange reaction, Genes Cells, vol.1, pp.1057-1068, 1996.

R. C. Gupta, L. R. Bazemore, E. I. Golub, and C. M. Radding, Activities of human recombination protein Rad51, Proc. Natl Acad. Sci. USA, vol.94, pp.463-468, 1997.

T. Haaf, E. I. Golub, G. Reddy, C. M. Radding, and D. C. Ward, Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes, Proc. Natl Acad. Sci. USA, vol.92, pp.2298-2302, 1995.

S. Vispe, C. Cazaux, C. Lesca, and M. Defais, Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation, Nucleic Acids Res, vol.26, pp.2859-2864, 1998.

E. Sonoda, M. S. Sasaki, J. M. Buerstedde, O. Bezzubova, A. Shinohara et al., , 1998.

, Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death, EMBO J, vol.17, pp.598-608

W. Henning and H. W. Sturzbecher, Homologous recombination and cell checkpoints: Rad51 in tumour progression and therapy resistance, Toxicology, vol.193, pp.91-109, 2003.

G. Christodoulopoulos, A. Malapetsa, H. Schipper, E. Golub, C. Radding et al., Chlorambucil induction of HsRad51 in B-cell chronic lymphocytic leukemia, Clin. Cancer Res, vol.5, pp.2178-2184, 1999.

S. J. Collis, A. Tighe, S. D. Scott, S. A. Roberts, J. H. Hendry et al., Ribozyme minigenemediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells, Nucleic Acids Res, vol.29, pp.1534-1538, 2001.

T. Ohnishi, T. Taki, T. Hiraga, N. Arita, and T. Morita, In vitro and in vivo potentiation of radiosensitivity of malignant gliomas by antisense inhibition of the RAD51 gene, Biochem. Biophys. Res. Commun, vol.245, pp.319-324, 1998.

M. Ito, S. Yamamoto, K. Nimura, K. Hiraoka, K. Tamai et al., Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin, J. Gene Med, vol.7, pp.1044-1052, 2005.

D. De-semir and J. M. Aran, Targeted gene repair: the ups and downs of a promising gene therapy approach, Curr. Gene Ther, vol.6, pp.481-504, 2006.

T. Ogawa, X. Yu, A. Shinohara, and E. H. Egelman, Similarity of the yeast RAD51 filament to the bacterial RecA filament, Science, vol.259, pp.1896-1899, 1993.

F. E. Benson, A. Stasiak, and S. C. West, Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA, EMBO J, vol.13, pp.5764-5771, 1994.

M. G. Sehorn, S. Sigurdsson, W. Bussen, V. M. Unger, and P. Sung, Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange, Nature, vol.429, pp.433-437, 2004.

R. M. Story, I. T. Weber, and T. A. Steitz, The structure of the E. coli recA protein monomer and polymer, Nature, vol.355, pp.318-325, 1992.

D. S. Shin, L. Pellegrini, D. S. Daniels, B. Yelent, L. Craig et al., Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2, EMBO J, vol.22, pp.4566-4576, 2003.

A. B. Conway, T. W. Lynch, Y. Zhang, G. S. Fortin, C. W. Fung et al., , 2004.

, Crystal structure of a Rad51 filament, Nat. Struct. Mol. Biol, vol.11, pp.791-796

Y. Wu, Y. He, I. A. Moya, X. Qian, and Y. Luo, Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation, Mol. Cell, vol.15, pp.423-435, 2004.

Z. Chen, H. Yang, and N. P. Pavletich, Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures, Nature, vol.453, pp.489-494, 2008.

L. Pellegrini, D. S. Yu, T. Lo, S. Anand, M. Lee et al., Insights into DNA recombination from the structure of a RAD51-BRCA2 complex, Nature, vol.420, pp.287-293, 2002.

H. Aihara, Y. Ito, H. Kurumizaka, S. Yokoyama, and T. Shibata, The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR, J. Mol. Biol, vol.290, pp.495-504, 1999.

T. Selmane, J. M. Camadro, S. Conilleau, F. Fleury, V. Tran et al., Identification of the subunit-subunit interface of Xenopus Rad51.1 protein: similarity to RecA, J. Mol. Biol, vol.335, pp.895-904, 2004.

S. Conilleau, Y. Takizawa, H. Tachiwana, F. Fleury, H. Kurumizaka et al., Location of tyrosine 315, a target for phosphorylation by cAbl tyrosine kinase, at the edge of the subunit-subunit interface of the human Rad51 filament, J. Mol. Biol, vol.339, pp.797-804, 2004.

Y. Matsuo, I. Sakane, Y. Takizawa, M. Takahashi, and H. Kurumizaka, Roles of the human Rad51 L1 and L2 loops in DNA binding, FEBS J, vol.273, pp.3148-3159, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00093026

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 1999.

T. K. Prasad, C. C. Yeykal, and E. C. Greene, Visualizing the assembly of human Rad51 filaments on double-stranded DNA, J. Mol. Biol, vol.363, pp.713-728, 2006.

M. Chabbert, H. Lami, and M. Takahashi, Cofactor induced orientation of the DNA bases in single-stranded DNA, complexed with RecA protein: a fluorescence anisotropy and time-decay study, J. Biol. Chem, vol.266, pp.5395-5400, 1991.

K. Maeshima, F. Maraboeuf, K. Morimatsu, T. Horii, and M. Takahashi, Nucleotide dependent structural and kinetic changes in Xenopus rad51.1-DNA complex stimulating the strand exchange reaction: destacking of DNA bases and restriction of their local motion, J. Mol. Biol, vol.284, pp.689-697, 1998.

J. Mine, L. Disseau, G. Cappello, M. Takahashi, M. Dutreix et al., Real time measurements of the nucleation, growth and dissociation of single Rad51-DNA nucleoprotein filaments, Nucleic Acids Res, vol.35, pp.7171-7187, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00412889

D. V. Bugreev and A. V. Mazin, Ca 2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity, Proc. Natl Acad. Sci. USA, vol.101, pp.9988-9993, 2004.

J. Nomme, Y. Takizawa, S. F. Martinez, A. Renodon-cornière, F. Fleury et al., Inhibition of filament formation of human Rad51 protein by a small peptide derived from the BRC motif of the BRCA2 protein, Genes Cells, vol.13, pp.471-481, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00414268

K. Morimatsu, T. Horii, and M. Takahashi, Interaction of Tyr103 and Tyr264 of the RecA protein with DNA and nucleotide cofactors. Fluorescence study of engineered proteins, Eur. J. Biochem, vol.228, pp.779-785, 1995.

R. M. Story and T. A. Steitz, Structure of the E. coli recA protein-ADP complex, Nature, vol.355, pp.374-376, 1992.

B. Müller, T. Koller, and A. Stasiak, Characterization of the DNA binding activity of stable RecA-DNA complexes. Interaction between the two DNA binding sites within RecA helical filaments, J. Mol. Biol, vol.212, pp.97-112, 1990.

J. K. De-zutter, A. L. Forget, K. M. Logan, and K. L. Knight, Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA filament, Structure, vol.9, pp.47-55, 2001.

X. Qian, Y. Wu, Y. He, and Y. Luo, Crystal structure of Methanococcus voltae RadA in complex with ADP: hydrolysis-induced conformational change, Biochemistry, vol.44, pp.13753-13761, 2005.

C. Ellouze, H. K. Kim, K. Maeshima, E. Tuite, K. Morimatsu et al., Nucleotide cofactor-dependent structural change of Xenopus laevis Rad51 protein filament detected by small-angle neutron scattering measurements in solution, Biochemistry, vol.36, pp.13524-13529, 1997.

P. Chi, S. Van-komen, M. G. Sehorn, S. Sigurdsson, and P. Sung, Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function, DNA Repair (Amst), vol.5, pp.381-391, 2006.

A. Ruk??, E. C. Birmingham, and M. D. Baker, Altered DNA repair and recombination responses in mouse cells expressing wildtype or mutant forms of RAD51, DNA Repair (Amst), vol.6, pp.1876-1889, 2007.

A. L. Forget, M. S. Loftus, D. A. Mcgrew, B. T. Bennett, and K. L. Knight, The human Rad51 K133A mutant is functional for DNA double-strand break repair in human cells, Biochemistry, vol.46, pp.3566-3575, 2007.

C. Cazenave, J. J. Toulme, and C. Helene, Binding of RecA protein to single-stranded nucleic acids: spectroscopic studies using fluorescent polynucleotides, EMBO J, vol.2, pp.2247-2251, 1983.

R. K. Ledneva, A. P. Razjivim, A. A. Kost, and A. A. Bogdanov, Interaction of tobacco mosaic virus protein with synthetic polynucleotides containing a fluorescent label, Nucleic Acids Res, vol.5, pp.4225-4243, 1978.

T. Mizukoshi, T. S. Kodama, Y. Fujiwara, T. Furuno, M. Nakanishi et al., Structural study of DNA duplexes containing the (6-4) photoproduct by fluorescence resonance energy transfer, Nucleic Acids Res, vol.29, pp.4948-4954, 2001.

P. A. Lanzetta, L. J. Alvarez, P. S. Reinach, and O. A. Candia, An improved assay for nanomole amounts of inorganic phosphate, Anal. Biochem, vol.100, pp.95-97, 1979.