D. I. Godfrey, S. Stankovic, and A. G. Baxter, Raising the NKT cell family, Nat Immunol, vol.11, pp.197-206, 2010.

J. L. Matsuda, O. V. Naidenko, L. Gapin, T. Nakayama, M. Taniguchi et al., Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers, J Exp Med, vol.192, pp.741-54, 2000.

E. Kobayashi, K. Motoki, T. Uchida, H. Fukushima, and Y. Koezuka, KRN7000, a novel immunomodulator, and its antitumor activities, Oncol Res, vol.7, pp.529-563, 1995.

L. Kain, B. Webb, B. L. Anderson, S. Deng, M. Holt et al., The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian ?-linked glycosylceramides, Immunity, vol.41, pp.543-54, 2014.

J. Gerichten-von, K. Schlosser, D. Lamprecht, I. Morace, M. Eckhardt et al., Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals, J Lipid Res, vol.58, pp.1247-58, 2017.

Y. A. Hannun and L. M. Obeid, Many ceramides, J Biol Chem, vol.286, pp.27855-62, 2011.

M. Levy and A. H. Futerman, Mammalian ceramide synthases, IUBMB Life, vol.62, pp.347-56, 2010.

J. Park, W. Park, and A. H. Futerman, Ceramide synthases as potential targets for therapeutic intervention in human diseases, Biochim Biophys Acta, vol.1841, pp.671-81, 2014.

L. M. Halasiddappa, H. Koefeler, A. H. Futerman, and A. Hermetter, Oxidized phospholipids induce ceramide accumulation in RAW 264.7 macrophages: role of ceramide synthases, PLoS One, vol.8, p.70002, 2013.

M. W. Holliday, S. B. Cox, M. H. Kang, and B. J. Maurer, C22: 0-and C24: 0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines, PLoS One, vol.8, issue.9, p.74768, 2013.

K. Iwabuchi, A. Prinetti, S. Sonnino, L. Mauri, T. Kobayashi et al., Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils, Glycoconj J, vol.25, pp.357-74, 2008.

B. Kroesen, S. Jacobs, B. J. Pettus, H. Sietsma, J. W. Kok et al., BcRinduced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome, J Biol Chem, vol.278, pp.14723-14754, 2003.

G. Seumois, M. Fillet, and L. Gillet, De novo C16-and C24-ceramide generation contributes to spontaneous neutrophil apoptosis, J Leukoc Biol, vol.81, pp.1477-86, 2007.

P. J. Brennan, R. Tatituri, C. Heiss, G. Watts, F. Hsu et al., Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction, Proc Natl Acad Sci U S A, vol.111, pp.13433-13441, 2014.

Y. J. Lee, K. L. Holzapfel, J. Zhu, and S. C. Jameson, Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells, Nature, vol.14, pp.1146-54, 2013.

Y. Pewzner-jung, H. Park, E. L. Laviad, L. C. Silva, S. Lahiri et al., A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways, J Biol Chem, vol.285, pp.10902-10912, 2010.

Y. Pewzner-jung, O. Brenner, S. Braun, E. L. Laviad, S. Ben-dor et al., A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy, J Biol Chem, vol.285, pp.10911-10934, 2010.

J. Park, W. Park, Y. Kuperman, S. Boura-halfon, P. et al., Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes, Hepatology, vol.57, pp.525-557, 2012.

H. Zigdon, A. Kogot-levin, J. Park, R. Goldschmidt, S. Kelly et al., Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain, J Biol Chem, vol.288, pp.4947-56, 2013.

O. Ben-david, P. , Y. Brenner, O. Laviad, E. L. Kogot-levin et al., Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels, J Biol Chem, vol.286, pp.30022-30055, 2011.

I. Petrache, K. Kamocki, C. Poirier, Y. Pewzner-jung, E. L. Laviad et al., Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models, PLoS One, vol.8, p.62968, 2013.

Y. Pewzner-jung, T. Tabazavareh, S. Grassme, H. Becker, K. A. Japtok et al., Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa, EMBO Mol Med, vol.6, pp.1205-1219, 2014.

W. Park, O. Brenner, A. Kogot-levin, A. Saada, A. H. Merrill et al., Development of pheochromocytoma in ceramide synthase 2 null mice, Endocr Relat Cancer, vol.22, pp.623-655, 2015.

M. Ali, J. Fritsch, H. Zigdon, Y. Pewzner-jung, S. Schütze et al., Altering the sphingolipid acyl chain composition prevents LPS/GLN-mediated hepatic failure in mice by disrupting TNFR1 internalization, Cell Death Dis, vol.4, p.929, 2013.

W. Park, J. Park, R. Erez-roman, A. Kogot-levin, J. R. Bame et al., Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization, J Biol Chem, vol.288, pp.30904-30920, 2013.

W. Park, J. Park, A. H. Merrill, J. Storch, Y. Pewzner-jung et al., Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain len gth, Biochim Biophys Acta, vol.1841, pp.1754-66, 2014.

L. C. Silva, O. Ben-david, P. , Y. Laviad, E. L. Stiban et al., Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes, J Lipid Res, vol.53, pp.430-436, 2012.

J. Sprent and C. D. Surh, Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells, Nat Immunol, vol.12, pp.478-84, 2011.

J. G. Monroe, ITAM-mediated tonic signalling through pre-BCR and BCR complexes, Nat Rev Immunol, vol.6, pp.283-94, 2006.

E. Macho-fernandez, L. J. Cruz, R. Ghinnagow, J. Fontaine, E. Bialecki et al., Targeted delivery of ?-galactosylceramide to CD8? + dendritic cells optimizes type I NKT cell-based antitumor responses, J Immunol, vol.193, pp.961-970, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02436034

V. Khairnar, V. Duhan, S. K. Maney, N. Honke, N. Shaabani et al., CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production, Nat Commun, vol.6, p.6217, 2015.

H. C. Xu, M. Grusdat, A. A. Pandyra, R. Polz, J. Huang et al., Type I interferon protects antiviral CD8 + T cells from NK cell cytotoxicity, Immunity, vol.40, pp.949-60, 2014.

D. A. Jaitin, E. Kenigsberg, H. Keren-shaul, N. Elefant, F. Paul et al., Massively parallel single-cell RNA-seq for marker-free decomposi tion of tissues into cell types, Science, vol.343, pp.776-785, 2014.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J, vol.17, pp.10-12, 2011.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-175, 2015.

M. Ali, A. Saroha, Y. Pewzner-jung, and A. H. Futerman, LPS-mediated septic shock is augmented in ceramide synthase 2 null mice due to elevated activity of TNF?-converting enzyme, FEBS Lett, vol.589, pp.2213-2220, 2015.

T. Zal, A. Volkmann, and B. Stockinger, Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen, J Exp Med, vol.180, pp.2089-99, 1994.

R. L. Shaner, J. C. Allegood, H. Park, E. Wang, S. Kelly et al., Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers, J Lipid Res, vol.50, pp.1692-707, 2009.

R. M. Zinkernagel, E. Haenseler, T. Leist, A. Cerny, H. Hengartner et al., T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay?, J Exp Med, vol.164, pp.1075-92, 1986.

J. R. Teijaro, Type I interferons in viral control and immune regulation, Curr Opin Virol, vol.16, pp.31-40, 2016.

P. Fitzgerald-bocarsly, Natural interferon-alpha producing cells: the plasmacytoid dendritic cells, Biotechniques, vol.22, pp.24-33, 2002.

C. Paget and F. Trottein, Role of type 1 natural killer T cells in pulmonary immunity, Mucosal Immunol, vol.6, pp.1054-67, 2013.

M. S. Tessmer, A. Fatima, C. Paget, F. Trottein, and L. Brossay, NKT cell immune responses to viral infection, Expert Opin Ther Targets, vol.13, pp.153-62, 2009.

J. A. Juno, Y. Keynan, and K. R. Fowke, Invariant NKT cells: regulation and function during viral infection, PLoS Pathog, vol.8, p.1002838, 2012.

F. Sillé, M. Boxem, D. Sprengers, N. Veerapen, G. Besra et al., Distinct requirements for CD1d intracellular transport for development of V(alpha)14 iNKT cells, J Immunol, vol.183, pp.1780-1788, 2009.

T. Egawa, G. Eberl, I. Taniuchi, and K. Benlagha, Genetic evidence supporting selection of the V?14i NKT cell lineage from double-positive thymocyte precursors, Immunity, vol.22, pp.705-721, 2005.

E. Schwartz, T. Lapidot, D. Gozes, T. S. Singer, and Y. Reisner, Abrogation of bone marrow allograft resistance in mice by increased total body irradiation correlates with eradication of host clonable T cells and alloreactive cytotoxic precursors, J Immunol, vol.138, pp.460-465, 1987.

Y. Reisner, I. Ben-bassat, D. Douer, A. Kaploon, E. Schwartz et al., Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation, Proc Natl Acad Sci U S A, vol.83, pp.4012-4017, 1986.

C. Mccarthy, D. Shepherd, S. Fleire, V. S. Stronge, M. Koch et al., The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation, J Exp Med, vol.204, pp.1131-1175, 2007.

J. Diana, T. Griseri, S. Lagaye, L. Beaudoin, E. Autrusseau et al., NKT cell-plasmacytoid dendritic cell cooperation via OX40 controls viral infection in a tissue-specific manner, Immunity, vol.30, pp.289-99, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407795

J. A. Hobbs, S. Cho, T. J. Roberts, V. Sriram, J. Zhang et al., Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus, J Virol, vol.75, pp.10746-54, 2001.

P. M. Spence, V. Sriram, L. Van-kaer, J. A. Hobbs, and R. R. Brutkiewicz, Generation of cellular immunity to lymphocytic choriomeningitis virus is independent of CD1d1 expression, Immunology, vol.104, pp.168-74, 2001.

C. Gabay and I. Kushner, Acute-phase proteins and other systemic responses to inflammation, N Engl J Med, vol.340, pp.448-54, 1999.

D. Santo, C. Arscott, R. Booth, S. Karydis, I. Jones et al., Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A, Nat Immunol, vol.11, pp.1039-1085, 2010.

M. Chang, C. Yeh, J. Chen, C. Huang, S. Lin et al., Altered expression patterns of lipid metabolism genes in an animal model of HCV core-related, nonobese, modest hepatic steatosis, BMC Genomics, vol.9, p.109, 2008.

K. S. Wun, G. Cameron, O. Patel, S. S. Pang, D. G. Pellicci et al., A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells, Immunity, vol.34, pp.327-366, 2011.

V. V. Parekh, A. K. Singh, M. T. Wilson, D. Olivares-villagomez, J. S. Bezbradica et al., Quantitative and qualitative differences in the in vivo res ponse of NKT cells to distinct alpha-and beta-anomeric glycolipids, J Immunol, vol.173, pp.3693-706, 2004.

S. D. Gadola, J. D. Silk, A. Jeans, P. A. Illarionov, M. Salio et al., Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases, J Exp Med, vol.203, pp.2293-303, 2006.

S. Porubsky, A. O. Speak, M. Salio, R. Jennemann, M. Bonrouhi et al., Globosides but not isoglobosides can impact the development of invariant NKT cells and their interaction with dendritic cells, J Immunol, vol.189, pp.3007-3024, 2012.

A. K. Stanic, D. Silva, A. D. Park, J. Sriram, V. Ichikawa et al., Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by beta-d-glucosylceramide synthase deficiency, Proc Natl Acad Sci U S A, vol.100, pp.1849-54, 2003.

Z. V. Popovic, M. Rabionet, R. Jennemann, D. Krunic, R. Sandhoff et al., Glucosylceramide synthase is involved in development of invariant natural killer T cells, Front Immunol, vol.8, p.848, 2017.

P. J. Brennan, R. Tatituri, M. Brigl, E. Y. Kim, A. Tuli et al., Invariant natural killer T cells recognize lipid self antigen induced by micro bial danger signals, Nat Immunol, vol.12, pp.1202-1213, 2011.

J. E. Gumperz, The ins and outs of CD1 molecules: bringing lipids under immunological surveillance, Traffic, vol.7, pp.2-13, 2006.

D. Vruchte-te, A. Jeans, F. M. Platt, and D. J. Sillence, Glycosphingolipid storage leads to the enhanced degradation of the B cell receptor in Sandhoff disease mice, J Inherit Metab Dis, vol.33, pp.261-70, 2010.

F. W. Mcnab, S. P. Berzins, D. G. Pellicci, K. Kyparissoudis, K. Field et al., The influence of CD1d in postselection NKT cell maturation and homeostasis, J Immunol, vol.175, pp.3762-3770, 2005.

J. L. Matsuda, L. Gapin, S. Sidobre, W. C. Kieper, J. T. Tan et al., Homeostasis of V alpha 14i NKT cells, Nat Immunol, vol.3, pp.966-74, 2002.

D. G. Wei, H. Lee, S. Park, L. Beaudoin, L. Teyton et al., Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes, J Exp Med, vol.202, pp.239-287, 2005.

F. Geissmann, T. O. Cameron, S. Sidobre, N. Manlongat, M. Kronenberg et al., Intravascular immune surveillance by CXCR6 + NKT cells patrolling liver sinusoids, PLoS Biol, vol.3, p.113, 2005.

B. Liang, T. Hara, K. Wagatsuma, J. Zhang, K. Maki et al., Role of hepatocyte-derived IL-7 in maintenance of intrahepatic NKT cells and T cells and development of B cells in fetal liver, J Immunol, vol.189, pp.4444-50, 2012.

O. Akbari, P. Stock, E. H. Meyer, G. J. Freeman, A. H. Sharpe et al., ICOS/ICOSL interaction is required for CD4 + invariant NKT cell function and homeostatic survival, J Immunol, vol.180, pp.5448-56, 2008.

M. Rieck, C. Kremser, K. Jobin, E. Mettke, C. Kurts et al., Ceramide synthase 2 facilitates S1P-dependent egress of thymocytes into the circulation in mice, Eur J Immunol, vol.47, issue.4, pp.677-84, 2017.