M. Taniguchi, M. Harada, S. Kojo, T. Nakayama, and H. Wakao, The regulatory role of Valpha14 NKT cells in innate and acquired immune response, Annu Rev Immunol, vol.21, pp.483-513, 2003.

A. Bendelac, P. B. Savage, and L. Teyton, The biology of NKT cells, Annu Rev Immunol, vol.25, pp.297-336, 2007.

S. P. Berzins, M. J. Smyth, and A. G. Baxter, Presumed guilty: natural killer T cell defects and human disease, Nat Rev Immunol, vol.11, pp.131-173, 2011.

J. Rossjohn, D. G. Pellicci, O. Patel, L. Gapin, and D. I. Godfrey, Recognition of CD1d-restricted antigens by natural killer T cells, Nat Rev Immunol, vol.12, pp.845-57, 2012.

P. J. Brennan, M. Brigl, and M. B. Brenner, Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions, Nat Rev Immunol, vol.13, pp.101-118, 2013.

L. S. Metelitsa, Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans, Clin Immunol, vol.140, pp.119-148, 2011.

I. F. Hermans, J. D. Silk, U. Gileadi, M. Salio, B. Mathew et al., NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells, J Immunol, vol.171, pp.5140-5147, 2003.

S. Fujii, K. Shimizu, Y. Okamoto, N. Kunii, T. Nakayama et al., NKT cells as an ideal anti-tumor immunotherapeutic, Front Immunol, vol.4, p.409, 2013.

V. Cerundolo, J. D. Silk, S. H. Masri, and M. Salio, Harnessing invariant NKT cells in vaccination strategies, Nat Rev Immunol, vol.9, pp.28-38, 2009.

S. R. Mattarollo and M. J. Smyth, NKT cell adjuvants in therapeutic vaccines against hematological cancers, Oncoimmunology, vol.2, p.22615, 2013.

E. Kobayashi, K. Motoki, T. Uchida, H. Fukushima, and Y. Koezuka, KRN7000, a novel immunomodulator, and its antitumor activities, Oncol Res, vol.7, pp.529-563, 1995.

T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko et al., CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides, Science, vol.278, pp.1626-1635, 1997.

L. J. Carreño, N. A. Saavedra-Ávila, and S. A. Porcelli, Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents, Clin Transl Immunology, vol.5, p.69, 2016.

S. S. Kharkwal, P. Arora, and S. A. Porcelli, Glycolipid activators of invariant NKT cells as vaccine adjuvants, Immunogenetics, vol.68, pp.597-610, 2016.

J. E. East, A. J. Kennedy, and T. J. Webb, Raising the roof: the preferential pharmacological stimulation of Th1 and th2 responses mediated by NKT cells, Med Res Rev, vol.34, pp.45-76, 2014.

X. Li, M. Fujio, M. Imamura, D. Wu, S. Vasan et al., Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant, Proc Natl Acad Sci U S A, vol.107, pp.13010-13015, 2010.

, Frontiers in Immunology | www.frontiersin.org, vol.8, p.879, 2017.

S. Fujii, A. Goto, and K. Shimizu, Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity, Blood, vol.113, pp.4262-72, 2009.

K. Shimizu, M. Asakura, J. Shinga, Y. Sato, S. Kitahara et al., Invariant NKT cells induce plasmacytoid dendritic cell (DC) cross-talk with conventional DCs for efficient memory CD8+ T cell induction, J Immunol, vol.190, pp.5609-5628, 2013.

S. Fujii and K. Shimizu, Immunotherapy with artificial adjuvant vector cells: harnessing both arms of the immune response, Oncoimmunology, issue.2, p.23432, 2013.

K. Shimizu, S. Yamasaki, J. Shinga, Y. Sato, T. Watanabe et al., Systemic DC activation modulates the tumor microenvironment and shapes the longlived tumor-specific memory mediated by CD8+ T cells, Cancer Res, vol.76, pp.3756-66, 2016.

K. Shimizu, T. Mizuno, J. Shinga, M. Asakura, K. Kakimi et al., Vaccination with antigen-transfected, NKT cell ligand-loaded, human cells elicits robust in situ immune responses by dendritic cells, Cancer Res, vol.73, pp.62-73, 2013.

K. Shimizu, Y. Kurosawa, M. Taniguchi, R. M. Steinman, and S. Fujii, Cross-presentation of glycolipid from tumor cells loaded with alphagalactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells, J Exp Med, vol.204, pp.2641-53, 2007.

K. Shimizu, A. Goto, M. Fukui, M. Taniguchi, and S. Fujii, Tumor cells loaded with alpha-galactosylceramide induce innate NKT and NK cell-dependent resistance to tumor implantation in mice, J Immunol, vol.178, pp.2853-61, 2007.

Y. Chung, H. Qin, C. Kang, S. Kim, L. W. Kwak et al., An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity, Blood, vol.110, pp.2013-2022, 2007.

Y. S. Choi, T. Hoory, A. Monie, A. Wu, and D. Connolly, Hung C-F. alpha-Galactosylceramide enhances the protective and therapeutic effects of tumor cell based vaccines for ovarian tumors, Vaccine, vol.26, pp.5855-63, 2008.

S. R. Mattarollo, A. C. West, K. Steegh, H. Duret, C. Paget et al., NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma, Blood, vol.120, pp.3019-3048, 2012.

M. K. Hunn, K. J. Farrand, K. Broadley, R. Weinkove, P. Ferguson et al., Vaccination with irradiated tumor cells pulsed with an adjuvant that stimulates NKT cells is an effective treatment for glioma, Clin Cancer Res, vol.18, pp.6446-59, 2012.

S. R. Mattarollo, K. Steegh, M. Li, H. Duret, F. Ngiow et al., Transient Foxp3(+) regulatory T-cell depletion enhances therapeutic anticancer vaccination targeting the immune-stimulatory properties of NKT cells, Immunol Cell Biol, vol.91, pp.105-119, 2013.

S. Hong, H. Lee, K. Jung, S. M. Lee, S. Lee et al., Tumor cells loaded with ?-galactosylceramide promote therapeutic NKT-dependent anti-tumor immunity in multiple myeloma, Immunol Lett, vol.156, pp.132-141, 2013.

M. K. Hunn and I. F. Hermans, Exploiting invariant NKT cells to promote T-cell responses to cancer vaccines, Oncoimmunology, issue.2, p.23789, 2013.

J. D. Gibbins, L. R. Ancelet, R. Weinkove, B. J. Compton, G. F. Painter et al., An autologous leukemia cell vaccine prevents murine acute leukemia relapse after cytarabine treatment, Blood, vol.124, pp.2953-63, 2014.

T. Dong, T. Yi, M. Yang, S. Lin, W. Li et al., Co-operation of ?-galactosylceramide-loaded tumour cells and TLR9 agonists induce potent anti-tumour responses in a murine colon cancer model, Biochem J, vol.473, pp.7-19, 2016.

I. F. Hermans, J. D. Silk, U. Gileadi, S. H. Masri, D. Shepherd et al., Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells, J Immunol, vol.178, pp.2721-2730, 2007.

H. Ko, Y. Kim, Y. Kim, C. Ko, S. Chang et al., A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model, Cancer Res, vol.67, pp.7477-86, 2007.

S. Fukushima, S. Hirata, Y. Motomura, D. Fukuma, Y. Matsunaga et al., Multiple antigen-targeted immunotherapy with alphagalactosylceramide-loaded and genetically engineered dendritic cells derived from embryonic stem cells, J Immunother, vol.32, pp.219-250, 2009.

H. Matsuyoshi, S. Hirata, Y. Yoshitake, Y. Motomura, D. Fukuma et al., Therapeutic effect of alpha-galactosylceramide-loaded dendritic cells genetically engineered to express SLC/CCL21 along with tumor antigen against peritoneally disseminated tumor cells, Cancer Sci, vol.96, pp.889-96, 2005.

J. Zeng, M. Shahbazi, C. Wu, H. C. Toh, and S. Wang, Enhancing immunostimulatory function of human embryonic stem cell-derived dendritic cells by CD1d overexpression, J Immunol, vol.188, pp.4297-304, 2012.

E. F. Craparo and M. L. Bondì, Application of polymeric nanoparticles in immunotherapy, Curr Opin Allergy Clin Immunol, vol.12, pp.658-64, 2012.

D. M. Smith, J. K. Simon, and J. R. Baker, Applications of nanotechnology for immunology, Nat Rev Immunol, vol.13, pp.592-605, 2013.

R. E. Serda, Particle platforms for cancer immunotherapy, Int J Nanomedicine, vol.8, pp.1683-96, 2013.

L. J. Cruz, P. J. Tacken, R. Fokkink, B. Joosten, M. C. Stuart et al., Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro, J Control Release, vol.144, pp.118-144, 2010.

Z. Ghotbi, A. Haddadi, S. Hamdy, R. W. Hung, J. Samuel et al., Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles, J Drug Target, vol.19, pp.281-92, 2011.

Y. Waeckerle-men and M. Groettrup, PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines, Adv Drug Deliv Rev, vol.57, pp.475-82, 2005.

M. F. Bachmann and G. T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns, Nat Rev Immunol, vol.10, pp.787-96, 2010.

Y. Park, S. J. Lee, Y. S. Kim, M. H. Lee, G. S. Cha et al., Nanoparticle-based vaccine delivery for cancer immunotherapy, Immune Netw, vol.13, p.177, 2013.

R. Alyautdin, I. Khalin, M. I. Nafeeza, M. H. Haron, and D. Kuznetsov, Nanoscale drug delivery systems and the blood-brain barrier, Int J Nanomedicine, vol.9, pp.795-811, 2014.

T. M. Fahmy, S. L. Demento, M. J. Caplan, I. Mellman, and W. M. Saltzman, Design opportunities for actively targeted nanoparticle vaccines, Nanomedicine (Lond), vol.3, pp.343-55, 2008.

R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, and T. M. Aminabhavi, Nano/ micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives, J Control Release, vol.125, pp.193-209, 2008.

J. Lü, X. Wang, C. Marin-muller, H. Wang, P. H. Lin et al., Current advances in research and clinical applications of PLGA-based nanotechnology, Expert Rev Mol Diagn, vol.9, pp.325-366, 2009.

Y. Lee, Y. Lee, S. Im, K. Kim, and C. Lee, Formulation and characterization of antigen-loaded PLGA nanoparticles for efficient cross-priming of the antigen, Immune Netw, vol.11, pp.163-171, 2011.

A. L. Silva, P. C. Soema, B. Slütter, F. Ossendorp, and W. Jiskoot, PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity, Hum Vaccin Immunother, vol.12, pp.1056-69, 2016.

P. Barral, P. Polzella, A. Bruckbauer, N. Van-rooijen, G. S. Besra et al., CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes, Nat Immunol, vol.11, pp.303-315, 2010.

P. Barral, M. D. Sánchez-niño, N. Van-rooijen, V. Cerundolo, and F. D. Batista, The location of splenic NKT cells favours their rapid activation by blood-borne antigen, EMBO J, vol.31, pp.2378-90, 2012.

P. Thapa, G. Zhang, C. Xia, A. Gelbard, W. W. Overwijk et al., Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy, Vaccine, vol.27, pp.3484-3492, 2009.

M. Fernandez, E. Chang, J. Fontaine, J. Bialecki, E. Rodriguez et al., Activation of invariant Natural Killer T lymphocytes Frontiers in Immunology | www, vol.8, p.879, 2017.

, in response to the ?-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles, Int J Pharm, vol.423, pp.45-54, 2012.

T. Nakamura, D. Yamazaki, J. Yamauchi, and H. Harashima, The nanoparticulation by octaarginine-modified liposome improves ?-galactosylceramidemediated antitumor therapy via systemic administration, J Control Release, vol.171, pp.216-240, 2013.

M. Ishii and N. Kojima, Effective stimulation of invariant natural killer T cells by oligomannose-coated liposomes, Int Immunopharmacol, vol.15, pp.685-92, 2013.

N. Kawasaki, J. L. Vela, C. M. Nycholat, C. Rademacher, A. Khurana et al., Targeted delivery of lipid antigen to macrophages via the CD169/ sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation, Proc Natl Acad Sci U S A, vol.110, pp.7826-7857, 2013.

E. Macho-fernandez, L. J. Cruz, R. Ghinnagow, J. Fontaine, E. Bialecki et al., Targeted delivery of ?-galactosylceramide to CD8?+ dendritic cells optimizes type I NKT cell-based antitumor responses, J Immunol, vol.193, pp.961-970, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02436034

S. J. Mckee, V. L. Young, F. Clow, C. M. Hayman, M. A. Baird et al., Virus-like particles and ?-galactosylceramide form a self-adjuvanting composite particle that elicits anti-tumor responses, J Control Release, vol.159, pp.338-383, 2012.

Y. Dölen, M. Kreutz, U. Gileadi, J. Tel, A. Vasaturo et al., Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses, Oncoimmunology, vol.5, p.1068493, 2015.

B. Li, M. Siuta, V. Bright, D. Koktysh, B. K. Matlock et al., Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine, Int J Nanomedicine, vol.11, pp.6103-6124, 2016.

S. Neumann, K. Young, B. Compton, R. Anderson, G. Painter et al., Synthetic TRP2 long-peptide and ?-galactosylceramide formulated into cationic liposomes elicit CD8+ T-cell responses and prevent tumour progression, Vaccine, vol.33, pp.5838-5882, 2015.

K. Crozat, R. Guiton, V. Contreras, V. Feuillet, C. Dutertre et al., The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells, J Exp Med, vol.207, pp.1283-92, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493468

A. Bachem, S. Güttler, E. Hartung, F. Ebstein, M. Schaefer et al., Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells, J Exp Med, vol.207, pp.1273-81, 2010.

L. F. Poulin, M. Salio, E. Griessinger, F. Anjos-afonso, L. Craciun et al., Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells, J Exp Med, vol.207, pp.1261-71, 2010.

S. L. Jongbloed, A. J. Kassianos, K. J. Mcdonald, G. J. Clark, X. Ju et al., BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens, J Exp Med, vol.141, pp.1247-60, 2010.

P. Arora, A. Baena, K. Yu, N. K. Saini, S. S. Kharkwal et al., A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens, Immunity, vol.40, pp.105-121, 2014.

V. Semmling, V. Lukacs-kornek, C. A. Thaiss, T. Quast, K. Hochheiser et al., Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs, Nat Immunol, vol.11, pp.313-333, 2010.

D. Sancho, D. Mourão-sá, O. P. Joffre, O. Schulz, N. C. Rogers et al., Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin, J Clin Invest, vol.118, pp.2098-110, 2008.

G. Picco, R. Beatson, J. Taylor-papadimitriou, and J. M. Burchell, Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas, Eur J Immunol, vol.44, pp.1947-55, 2014.

K. M. Tullett, M. H. Lahoud, and K. J. Radford, Harnessing human cross-presenting CLEC9A(+)XCR1(+) dendritic cells for immunotherapy, Front Immunol, vol.5, p.239, 2014.

R. Ghinnagow, D. Meester, J. Cruz, L. J. Aspord, C. Corgnac et al., Co-delivery of the NKT agonist ?-galactosylceramide and tumor antigens to cross-priming dendritic cells breaks tolerance to self-antigens and promotes antitumor responses, Oncoimmunology
URL : https://hal.archives-ouvertes.fr/inserm-02436029

C. A. Klebanoff, N. Acquavella, Z. Yu, and N. P. Restifo, Therapeutic cancer vaccines: are we there yet?, Immunol Rev, vol.239, pp.27-44, 2011.

B. M. Andersen and J. R. Ohlfest, Increasing the efficacy of tumor cell vaccines by enhancing cross priming, Cancer Lett, vol.325, pp.155-64, 2012.

K. Palucka and J. Banchereau, Dendritic-cell-based therapeutic cancer vaccines, Immunity, vol.39, pp.38-48, 2013.

D. S. Chen and I. Mellman, Oncology meets immunology: the cancer-immunity cycle, Immunity, vol.39, pp.1-10, 2013.

J. Pol, N. Bloy, A. Buqué, A. Eggermont, I. Cremer et al., Trial watch: peptide-based anticancer vaccines, Oncoimmunology, vol.4, p.974411, 2015.

J. G. Coelho-dos-reis, J. Huang, T. Tsao, F. V. Pereira, R. Funakoshi et al., Co-administration of ?-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells, Clin Immunol, vol.168, pp.6-15, 2016.