C. E. Dunbar, K. A. High, J. K. Joung, D. B. Kohn, K. Ozawa et al., Gene therapy comes of age, vol.359, p.4672, 2018.

L. A. George, S. K. Sullivan, A. Giermasz, J. E. Rasko, B. J. Samelson-jones et al., Hemophilia B gene therapy with a high-specific-activity factor IX variant, N. Engl. J. Med, vol.377, pp.2215-2227, 2017.

A. C. Nathwani, U. M. Reiss, E. G. Tuddenham, C. Rosales, P. Chowdary et al., Long-term safety and efficacy of factor IX gene therapy in hemophilia B, N. Engl. J. Med, vol.371, 1994.

S. Rangarajan, L. Walsh, W. Lester, D. Perry, B. Madan et al., AAV5-factor VIII gene transfer in severe hemophilia A, N. Engl. J. Med, vol.377, pp.2519-2530, 2017.

K. A. High and X. M. Anguela, Adeno-associated viral vectors for the treatment of hemophilia, Hum. Mol. Genet, vol.25, pp.36-41, 2016.

L. Naldini, Gene therapy returns to centre stage, Nature, vol.526, pp.351-360, 2015.

M. Sessa, L. Lorioli, F. Fumagalli, S. Acquati, D. Redaelli et al., Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, Lancet, vol.388, pp.476-487, 2016.

A. Cantore, N. Nair, P. D. Valle, M. D. Matteo, J. Màtrai et al., Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice, Blood, vol.120, pp.4517-4520, 2012.

A. Cantore, M. Ranzani, C. C. Bartholomae, M. Volpin, P. D. Valle et al., Liver-directed lentiviral gene therapy in a dog model of hemophilia B, Sci. Transl. Med, vol.7, pp.277-228, 2015.

B. D. Brown, M. A. Venneri, A. Zingale, L. Sergi, L. Sergi et al., Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer, Nat. Med, vol.12, pp.585-591, 2006.

B. D. Brown, A. Cantore, A. Annoni, L. S. Sergi, A. Lombardo et al., A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice, Blood, vol.110, pp.4144-4152, 2007.

N. Tao, G. Gao, M. Parr, J. Johnston, T. Baradet et al., Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver, Mol. Ther, vol.3, pp.28-35, 2001.

S. Gordon, Phagocytosis: An immunobiologic process, Immunity, vol.44, pp.463-475, 2016.

V. Racanelli and B. Rehermann, The liver as an immunological organ, Hepatology, vol.43, pp.54-62, 2006.

P. Oldenborg, H. D. Gresham, and F. P. Lindberg, CD47-signal regulatory protein ? (SIRP?) regulates Fc? and complement receptor-mediated phagocytosis, J. Exp. Med, vol.193, pp.855-862, 2001.

K. Takenaka, T. K. Prasolava, J. C. Wang, S. M. Mortin-toth, S. Khalouei et al., Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells, Nat. Immunol, vol.8, pp.1313-1323, 2007.

J. Agudo, A. Ruzo, K. Kitur, R. Sachidanandam, J. M. Blander et al., A TLR and non-TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade, Mol. Ther, vol.20, pp.2257-2267, 2012.

P. Oldenborg, A. Zheleznyak, Y. Fang, C. F. Lagenaur, H. D. Gresham et al., Role of CD47 as a marker of self on red blood cells, Science, vol.288, pp.2051-2054, 2000.

R. Majeti, M. P. Chao, A. A. Alizadeh, W. W. Pang, S. Jaiswal et al., CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells, Cell, vol.138, pp.286-299, 2009.

P. L. Rodriguez, T. Harada, D. A. Christian, D. A. Pantano, R. K. Tsai et al., Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles, Science, vol.339, pp.971-975, 2013.

Y. Kojima, J. Volkmer, K. Mckenna, M. Civelek, A. J. Lusis et al., CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis, Nature, vol.536, pp.86-90, 2016.

N. Laguette, B. Sobhian, N. Casartelli, M. Ringeard, C. Chable-bessia et al., SAMHD1 is the dendritic-and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx, Nature, vol.474, pp.654-657, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00616451

G. Escobar, D. Moi, A. Ranghetti, P. Ozkal-baydin, M. L. Squadrito et al., Genetic engineering of hematopoiesis for targeted IFN-? delivery inhibits breast cancer progression, Sci. Transl. Med, vol.6, pp.217-213, 2014.

M. Milani, A. Annoni, S. Bartolaccini, M. Biffi, F. Russo et al., Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy, EMBO Mol. Med, vol.9, pp.1558-1573, 2017.

R. D. Berkowitz, A. Ohagen, S. Höglund, and S. P. Goff, Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo, J. Virol, vol.69, pp.6445-6456, 1995.

E. M. Campbell, O. Perez, M. Melar, and T. J. Hope, Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell, Virology, vol.360, pp.286-293, 2007.

L. G. Guidotti, D. Inverso, L. Sironi, P. D. Lucia, J. Fioravanti et al., Immunosurveillance of the liver by intravascular effector CD8 + T cells, vol.161, pp.486-500, 2015.

A. P. Benechet, L. Ganzer, and M. Iannacone, Intravital microscopy analysis of hepatic T cell dynamics, Methods Mol. Biol, vol.1514, pp.49-61, 2017.

H. Huthoff and G. J. Towers, Restriction of retroviral replication by APOBEC3G/F and TRIM5?, Trends Microbiol, vol.16, pp.612-619, 2008.

J. T. Kimata, Stepping toward a macaque model of HIV-1 induced AIDS, Viruses, vol.6, pp.3643-3651, 2014.

P. Simioni, D. Tormene, G. Tognin, S. Gavasso, C. Bulato et al., X-linked thrombophilia with a mutant factor IX (factor IX Padua), N. Engl. J. Med, vol.361, pp.1671-1675, 2009.

J. A. Dumont, K. S. Loveday, D. R. Light, G. F. Pierce, and H. Jiang, Evaluation of the toxicology, pharmacokinetics, and local tolerance of recombinant factor IX Fc fusion protein in animals, Thromb. Res, vol.136, pp.371-378, 2015.

A. C. Nathwani, A. M. Davidoff, H. Hanawa, Y. Hu, F. A. Hoffer et al., Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques, Blood, vol.100, pp.1662-1669, 2002.

A. Biffi, C. C. Bartolomae, D. Cesana, N. Cartier, P. Aubourg et al., Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection, Blood, vol.117, pp.5332-5339, 2011.

A. Biffi, E. Montini, L. Lorioli, M. Cesani, F. Fumagalli et al., Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy, Science, vol.341, p.1233158, 2013.

A. Aiuti, L. Biasco, S. Scaramuzza, F. Ferrua, M. P. Cicalese et al., Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome, Science, vol.341, p.1233151, 2013.

R. Hughes, G. Towers, and M. Noursadeghi, Innate immune interferon responses to human immunodeficiency virus-1 infection, Rev. Med. Virol, vol.22, pp.257-266, 2012.

D. Finkelshtein, A. Werman, D. Novick, S. Barak, and M. Rubinstein, LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.7306-7311, 2013.

A. Annoni, B. D. Brown, A. Cantore, L. S. Sergi, L. Naldini et al., In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance, Blood, vol.114, pp.5152-5161, 2009.

B. D. Brown, B. Gentner, A. Cantore, S. Colleoni, M. Amendola et al., Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state, Nat. Biotechnol, vol.25, pp.1457-1467, 2007.

N. G. Sosale, I. I. Ivanovska, R. K. Tsai, J. Swift, J. W. Hsu et al., Marker of Self" CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors

, Mol. Ther. Methods Clin. Dev, vol.3, p.16080, 2016.

F. Jacobs, E. Wisse, and B. D. Geest, The role of liver sinusoidal cells in hepatocyte-directed gene transfer, Am. J. Pathol, vol.176, pp.14-21, 2010.

F. Mingozzi, N. C. Hasbrouck, E. Basner-tschakarjan, S. A. Edmonson, D. J. Hui et al., Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver, Blood, vol.110, pp.2334-2341, 2007.

E. Montini, D. Cesana, M. Schmidt, F. Sanvito, C. C. Bartholomae et al., The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy, J. Clin. Invest, vol.119, pp.964-975, 2009.

L. Wang, M. Zoppe, T. M. Hackeng, J. H. Griffin, K. Lee et al., A factor IX-deficient mouse model for hemophilia B gene therapy, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.11563-11566, 1997.

A. Amabile, A. Migliara, P. Capasso, M. Biffi, D. Cittaro et al., Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing, Cell, vol.167, pp.219-232, 2016.

A. Lombardo, D. Cesana, P. Genovese, B. D. Stefano, E. Provasi et al., Site-specific integration and tailoring of cassette design for sustainable gene transfer, Nat. Methods, vol.8, pp.861-869, 2011.

J. Mátrai, A. Cantore, C. C. Bartholomae, A. Annoni, W. Wang et al., Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk, Hepatology, vol.53, pp.1696-1707, 2011.

S. Firouzi, Y. López, Y. Suzuki, K. Nakai, S. Sugano et al., Development and validation of a new high-throughput method to investigate the clonality of HTLV-1-infected cells based on provirus integration sites, Genome Med, vol.6, p.46, 2014.

N. A. Gillet, N. Malani, A. Melamed, N. Gormley, R. Carter et al., The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones, Blood, vol.117, pp.3113-3122, 2011.

G. Spinozzi, A. Calabria, S. Brasca, S. Beretta, I. Merelli et al., VISPA2: A scalable pipeline for high-throughput identification and annotation of vector integration sites, BMC Bioinformatics, vol.18, p.520, 2017.

U. Abel, A. Deichmann, A. Nowrouzi, R. Gabriel, C. C. Bartholomae et al., Analyzing the number of common integration sites of viral vectors-New methods and computer programs, PLOS ONE, vol.6, p.24247, 2011.

D. Cesana, M. Ranzani, M. Volpin, C. Bartholomae, C. Duros et al., Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo, Mol. Ther, vol.22, pp.774-785, 2014.

E. Cristofori, E. Ayuso, R. Montini, M. Peters, A. Iannacone et al.,

M. Milani, A. Annoni, F. Moalli, T. Liu, D. Cesana et al., , p.7325

, Sci Transl Med that LV-mediated gene therapy might be an effective strategy for treating hemophilia and possibly other disorders. administration in monkeys, the LVs showed high transduction efficacy without signs of toxicity. The results suggest phagocytosis by increasing the content of the phagocytosis inhibitor CD47 on their surface. Upon intravenous . developed a shielded LV able to escape et al efficacy possibly due to fast clearance by phagocytes. Now, Milani vectors (LVs) has been explored as possible alternative; however, preclinical data reported low transduction hemophilia. However, AAVs have limitations hindering their efficacy in a subgroup of patients. The use of lentiviral Gene therapy using adeno

, CONTENT RELATED

, This article cites 53 articles, 17 of which you can access for free