C. Alarcón, A. Zaromytidou, Q. Xi, S. Gao, J. Yu et al., Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-? Pathways, Cell, vol.139, pp.757-769, 2009.

M. Aragona, T. Panciera, A. Manfrin, S. Giulitti, F. Michielin et al., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors, Cell, vol.154, pp.1047-1059, 2013.

E. R. Barry, T. Morikawa, B. L. Butler, K. Shrestha, R. De-la-rosa et al., Restriction of intestinal stem cell expansion and the regenerative response by YAP, Nature, vol.493, pp.106-110, 2013.

S. Basu, N. F. Totty, M. S. Irwin, M. Sudol, and J. Downward, Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis, Mol Cell, vol.11, pp.11-23, 2003.

T. Benavides-damm and M. Egli, Calcium's role in mechanotransduction during muscle development, Cell Physiol. Biochem, vol.33, pp.249-272, 2014.

A. Benhaddou, C. Keime, T. Ye, A. Morlon, I. Michel et al., Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation, Cell Death Differ, vol.19, pp.220-231, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00654943

A. T. Bertrand, S. Ziaei, C. Ehret, H. Duchemin, K. Mamchaoui et al., Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors, J. Cell. Sci, vol.127, pp.2873-2884, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02426468

J. Bogomolovas, A. Gasch, F. Simkovic, D. J. Rigden, S. Labeit et al., Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line, Open Biol, vol.4, p.140041, 2014.

D. R. Bolster, N. Kubica, S. J. Crozier, D. L. Williamson, P. A. Farrell et al., Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle, J. Physiol, vol.553, pp.213-220, 2003.

N. E. Brooks and K. H. Myburgh, Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways, Front. Physiol, vol.5, p.99, 2014.

J. Cai, N. Zhang, Y. Zheng, R. F. De-wilde, A. Maitra et al., The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program, Genes Dev, vol.24, pp.2383-2388, 2010.

F. D. Camargo, S. Gokhale, J. B. Johnnidis, D. Fu, G. W. Bell et al., YAP1 increases organ size and expands undifferentiated progenitor cells, Curr. Biol, vol.17, pp.2054-2060, 2007.

X. Cao, S. L. Pfaff, and F. H. Gage, YAP regulates neural progenitor cell number via the TEA domain transcription factor, Genes Dev, vol.22, pp.3320-3334, 2008.

B. Cinar, P. K. Fang, M. Lutchman, D. Di-vizio, R. M. Adam et al., The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1, EMBO J, vol.26, pp.4523-4534, 2007.

F. K. Collak, K. Yagiz, D. J. Luthringer, B. Erkaya, and B. Cinar, , 2012.

, Threonine-120 phosphorylation regulated by phosphoinositide-3-Kinase/Akt and mammalian target of rapamycin pathway signaling limits the antitumor activity of mammalian sterile 20-Like Kinase 1, J. Biol. Chem, vol.287, pp.23698-23709

L. E. Crose, K. A. Galindo, J. G. Kephart, C. Chen, J. Fitamant et al., Alveolar rhabdomyosarcoma-associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppression, J. Clin. Invest, vol.124, pp.285-296, 2014.

A. Csibi and J. Blenis, Hippo-YAP and mTOR pathways collaborate to regulate organ size, Nat. Cell Biol, vol.14, pp.1244-1245, 2012.

Y. Cui, F. M. Hameed, B. Yang, K. Lee, C. Q. Pan et al., Cyclic stretching of soft substrates induces spreading and growth, Nat. Commun, vol.6, p.6333, 2015.

M. De-falco, D. Luca, and A. , Involvement of cdks and cyclins in muscle differentiation, Eur. J. Histochem, vol.50, pp.19-23, 2006.

J. Dong, G. Feldmann, J. Huang, S. Wu, N. Zhang et al., Elucidation of a universal size-control mechanism in Drosophila and mammals, Cell, vol.130, pp.1120-1133, 2007.

T. P. Driscoll, B. D. Cosgrove, S. J. Heo, Z. E. Shurden, and R. L. Mauck, Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells, Biophys. J, vol.108, pp.2783-2793, 2015.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, pp.179-183, 2011.

R. Fan, N. G. Kim, and B. M. Gumbiner, Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositidedependent kinase-1, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.2569-2574, 2013.

B. G. Fernández, P. Gaspar, C. Brás-pereira, B. Jezowska, S. R. Rebelo et al., Actin-capping protein and the hippo pathway regulate Factin and tissue growth in Drosophila, Development, vol.138, pp.2337-2346, 2011.

P. Fernando, J. F. Kelly, K. Balazsi, R. S. Slack, and L. A. Megeney, , 2002.

, Caspase 3 activity is required for skeletal muscle differentiation, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.11025-11030

O. Ferrigno, F. Lallemand, F. Verrecchia, S. L'hoste, J. Camonis et al., Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-?/Smad signaling, Oncogene, vol.21, pp.4879-4884, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00147464

R. A. Frost and C. H. Lang, Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle, Endocrinol. Metab. Clin. North. Am, vol.41, pp.297-322, 2012.

N. Galili, R. J. Davis, W. J. Fredericks, S. Mukhopadhyay, F. J. Rauscher et al., Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma, Nat. Genet, vol.5, pp.230-235, 1993.

S. T. Gee, S. L. Milgram, K. L. Kramer, F. L. Conlon, and S. A. Moody, Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone, PLoS ONE, vol.6, p.20309, 2011.

A. Goldberg, Protein synthiesis during work-induced growth of skeletal muscle, J. Cell Biol, vol.36, pp.653-658, 1968.

A. L. Goldberg, J. D. Etlinger, D. F. Goldspink, J. , and C. , Mechanism of work-induced hypertrophy of skeletal muscle, Med. Sci. Sports, vol.7, pp.185-198, 1975.

C. A. Goodman, The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli, Rev. Physiol. Biochem. Pharmacol, vol.166, pp.43-95, 2014.

C. A. Goodman, J. M. Dietz, B. L. Jacobs, R. M. Mcnally, J. You et al., Yes-associated protein is up-regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy, FEBS Lett, vol.589, pp.1491-1497, 2015.

K. Grannas, L. Arngården, P. Lönn, M. Mazurkiewicz, A. Blokzijl et al., Crosstalk between Hippo and TGF?: subcellular localization of YAP/TAZ/Smad complexes, J. Mol. Biol, vol.427, pp.3407-3415, 2015.

C. Guilluy, L. D. Osborne, L. Van-landeghem, L. Sharek, R. Superfine et al., Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus, Nat. Cell Biol, vol.16, pp.376-381, 2014.

B. M. Gumbiner and N. G. Kim, The Hippo-YAP signaling pathway and contact inhibition of growth, J. Cell Sci, vol.127, pp.709-717, 2014.

G. Halder, S. Dupont, and S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ, Nat. Rev. Mol. Cell Biol, vol.13, pp.591-600, 2012.

C. G. Hansen, T. Moroishi, and K. L. Guan, YAP and TAZ: a nexus for Hippo signaling and beyond, Trends Cell Biol, vol.25, pp.499-513, 2015.

F. Haque, D. J. Lloyd, D. T. Smallwood, C. L. Dent, C. M. Shanahan et al., SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton, Mol. Cell. Biol, vol.26, pp.3738-3751, 2006.

K. F. Harvey, C. M. Pfleger, and I. K. Hariharan, The drosophila mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis, Cell, vol.114, pp.457-467, 2003.

J. W. Haskins, D. X. Nguyen, and D. F. Stern, Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration, Sci. Signal, vol.7, p.116, 2014.

C. Y. Ho, D. E. Jaalouk, M. K. Vartiainen, and J. Lammerding, Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics, Nature, vol.497, pp.507-511, 2013.

E. P. Hoffman, R. H. Brown, and L. M. Kunkel, Dystrophin: the protein product of the Duchenne muscular dystrophy locus, Cell, vol.51, pp.919-928, 1987.

T. A. Hornberger, D. D. Armstrong, T. J. Koh, T. J. Burkholder, and K. A. Esser, Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction, Am. J. Physiol, vol.288, pp.185-194, 2005.

T. A. Hornberger and K. A. Esser, Mechanotransduction and the regulation of protein synthesis in skeletal muscle, Proc. Nutr. Soc, vol.63, pp.331-335, 2004.

C. Huang and R. Ogawa, Mechanotransduction in bone repair and regeneration, FASEB J, vol.24, pp.3625-3632, 2010.

J. J. Hulmi, B. M. Oliveira, M. Silvennoinen, W. M. Hoogaars, H. Ma et al., Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins, Am. J. Physiol. Endocrinol. Metab, vol.304, 2013.

M. Imajo, K. Miyatake, A. Iimura, A. Miyamoto, and E. Nishida, A molecular mechanism that links Hippo signalling to the inhibition of Wnt/?-catenin signalling, EMBO J, vol.31, pp.1109-1122, 2012.

J. Ishibashi, R. L. Perry, A. Asakura, and M. A. Rudnicki, MyoD induces myogenic differentiation through cooperation of its NH2-and COOH-terminal regions, J. Cell Biol, vol.171, pp.471-482, 2005.

S. W. Jang, S. J. Yang, S. Srinivasan, Y. , and K. , Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation, J. Biol. Chem, vol.282, pp.30836-30844, 2007.

R. Johnson and G. Halder, The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment, Nat. Rev. Drug Discov, vol.13, pp.63-79, 2014.

R. N. Judson, S. R. Gray, C. Walker, A. M. Carroll, C. Itzstein et al., Constitutive expression of Yes-associated protein (Yap) in adult skeletal muscle fibres induces muscle atrophy and myopathy, PLoS ONE, vol.8, p.59622, 2013.

R. N. Judson, A. M. Tremblay, P. Knopp, R. B. White, R. Urcia et al., The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells, J. Cell Sci, vol.125, pp.6009-6019, 2012.

K. Kaneko, M. Ito, Y. Naoe, A. Lacy-hulbert, and K. Ikeda, Integrin ?v in the mechanical response of osteoblast lineage cells, Biochem. Biophys. Res. Commun, vol.447, pp.352-357, 2014.

K. S. Kang and A. G. Robling, New insights into Wnt-Lrp5/6-?-catenin signaling in mechanotransduction, Front. Endocrinol. (Lausanne), vol.5, p.246, 2014.

G. Kaushik and A. J. Engler, From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. Prog, Mol. Biol. Transl. Sci, vol.126, pp.219-242, 2014.

N. G. Kim, E. Koh, X. Chen, and B. M. Gumbiner, E-cadherin mediates contact inhibition of proliferation through Hippo signalingpathway components, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.11930-11935, 2011.

J. Kopf, P. Paarmann, C. Hiepen, D. Horbelt, and P. Knaus, BMP growth factor signaling in a biomechanical context, Biofactors, vol.40, pp.171-187, 2014.

S. Lange, The kinase domain of titin controls muscle gene expression and protein turnover, Science, vol.308, pp.1599-1603, 2005.

C. Lepper and C. M. Fan, Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells, Genesis, vol.48, pp.424-436, 2010.

V. Llado, Y. Nakanishi, A. Duran, M. Reina-campos, P. M. Shelton et al., Repression of intestinal stem cell function and tumorigenesis through direct phosphorylation of ?-Catenin and Yap by PKC?, Cell Rep, vol.10, pp.740-754, 2015.

M. L. Lombardi and J. Lammerding, Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function, Biochem. Soc. Trans, vol.39, pp.1729-1734, 2011.

T. Maeda, T. Sakabe, A. Sunaga, K. Sakai, A. L. Rivera et al., Conversion of mechanical force into TGF-?-mediated biochemical signals, Curr. Biol, vol.21, pp.933-941, 2011.

J. H. Mar and C. P. Ordahl, A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin T gene promoter, Proc. Natl. Acad. Sci. U.S.A, vol.85, pp.6404-6408, 1988.

R. Mateus, R. Lourenço, Y. Fang, G. Brito, A. Farinho et al., Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration, Development, vol.142, pp.2752-2763, 2015.

C. Michaloglou, W. Lehmann, T. Martin, C. Delaunay, A. Hueber et al., The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity, PLoS ONE, vol.8, p.61916, 2013.

F. Miralles, G. Posern, A. I. Zaromytidou, and R. Treisman, Actin dynamics control SRF activity by regulation of its coactivator MAL, Cell, vol.113, pp.329-342, 2003.

M. Miyazaki and K. A. Esser, Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals, J. Appl. Physiol, vol.106, pp.1367-1373, 1985.

M. Miyazaki, J. J. Mccarthy, M. J. Fedele, and K. A. Esser, Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling, J. Physiol, vol.589, pp.1831-1846, 2011.

E. M. Morin-kensicki, B. N. Boone, M. Howell, J. R. Stonebraker, J. Teed et al., Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65, Mol. Cell. Biol, vol.26, pp.77-87, 2006.

T. Moroishi, H. W. Park, B. Qin, Q. Chen, Z. Meng et al., A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis, Genes Dev, vol.29, pp.1271-1284, 2015.

G. A. Nader and K. A. Esser, Intracellular signaling specificity in skeletal muscle in response to different modes of exercise, J. Appl. Physiol, vol.90, pp.1936-1942, 1985.

Y. Nagata, T. A. Partridge, R. Matsuda, and P. S. Zammit, Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling, J. Cell Biol, vol.174, pp.245-253, 2006.

M. Narimatsu, P. Samavarchi-tehrani, X. Varelas, and J. L. Wrana, Distinct polarity cues direct Taz/Yap and TGF? receptor localization to differentially control TGF?-induced Smad signaling, Dev. Cell, vol.32, pp.652-656, 2015.

T. Oka, V. Mazack, and M. Sudol, Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP), J. Biol. Chem, vol.283, pp.27534-27546, 2008.

M. Overholtzer, J. Zhang, G. A. Smolen, B. Muir, W. Li et al., Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.12405-12410, 2006.

J. B. Papizan and E. N. Olson, Hippo in the path to heart repair, Circ. Res, vol.115, pp.332-334, 2014.

M. Paramasivam, A. Sarkeshik, J. R. Yates, . Iii, M. J. Fernandes et al., Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor, Mol. Biol. Cell, vol.22, pp.3725-3733, 2011.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo et al., Alternative Wnt signaling activates YAP/TAZ, Cell, vol.162, pp.780-794, 2015.

P. H. Patel, D. Dutta, and B. A. Edgar, Niche appropriation by Drosophila intestinal stem cell tumours, Nat. Cell Biol, vol.17, pp.1182-1192, 2015.

R. Piccirillo, F. Demontis, N. Perrimon, and A. L. Goldberg, Mechanisms of muscle growth and atrophy in mammals and Drosophila, Dev. Dyn, vol.243, pp.201-215, 2014.

S. W. Plouffe, A. W. Hong, and K. L. Guan, Disease implications of the Hippo/YAP pathway, Trends Mol. Med, vol.21, pp.212-222, 2015.

S. J. Rawat and J. Chernoff, Regulation of mammalian Ste20 (Mst) kinases, Trends Biochem. Sci, vol.40, pp.149-156, 2015.

R. Ribas, N. Moncaut, C. Siligan, K. Taylor, J. W. Cross et al., Members of the TEAD family of transcription factors regulate the expression of Myf5 in ventral somitic compartments, Dev. Biol, vol.355, pp.372-380, 2011.

J. Rodriguez, B. Vernus, I. Chelh, I. Cassar-malek, J. C. Gabillard et al., Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways, Am. J. Physiol. Endocrinol. Metab, vol.71, pp.1081-1088, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01205103

M. Sandri, Signaling in muscle atrophy and hypertrophy, Physiology (Bethesda), vol.23, pp.160-170, 2008.

L. Sansores-garcia, W. Bossuyt, K. Wada, S. Yonemura, C. Tao et al., Modulating F-actin organization induces organ growth by affecting the Hippo pathway, EMBO J, vol.30, pp.2325-2335, 2011.

Y. Sawada and M. P. Sheetz, Force transduction by Triton cytoskeletons, J. Cell Biol, vol.156, pp.609-615, 2002.

S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri, Mechanisms regulating skeletal muscle growth and atrophy, FEBS J, vol.280, pp.4294-4314, 2013.

K. Schlegelmilch, M. Mohseni, O. Kirak, J. Pruszak, J. R. Rodriguez et al., Yap1 acts downstream of ?-catenin to control epidermal proliferation, Cell, vol.144, pp.782-795, 2011.

M. C. Schroeder and G. Halder, Regulation of the Hippo pathway by cell architecture and mechanical signals, Semin. Cell Dev. Biol, vol.23, pp.803-811, 2012.

U. Schütte, S. Bisht, L. C. Heukamp, M. Kebschull, A. Florin et al., Hippo signaling mediates proliferation, invasiveness, and metastatic potential of clear cell renal cell carcinoma, Transl. Oncol, vol.7, pp.309-321, 2014.

D. N. Shapiro, J. E. Sublett, B. Li, J. R. Downing, and C. W. Naeve, Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma, Cancer Res, vol.53, pp.5108-5112, 1993.

M. R. Silvis, B. T. Kreger, W. H. Lien, O. Klezovitch, G. M. Rudakova et al., ?-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1, Sci Signal, vol.4, p.33, 2011.

G. Sorrentino, N. Ruggeri, V. Specchia, M. Cordenonsi, M. Mano et al., Metabolic control of YAP and TAZ by the mevalonate pathway, Nat. Cell Biol, vol.16, pp.357-366, 2014.

E. E. Spangenburg, Changes in muscle mass with mechanical load: possible cellular mechanisms, Appl. Physiol. Nutr. Metab, vol.34, pp.328-335, 2009.

K. Straßburger, M. Tiebe, F. Pinna, K. Breuhahn, and A. A. Teleman, , 2012.

, Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP, Dev. Biol, vol.367, pp.187-196

M. Sudol, Structure and function of the WW domain, Prog. Biophys. Mol. Biol, vol.65, pp.113-132, 1996.

M. Sudol, P. Bork, A. Einbond, K. Kastury, T. Druck et al., Characterization of the Mammalian YAP (Yes-associated Protein) gene and its role in defining a novel protein module, the WW Domain, J. Biol. Chem, vol.270, pp.14733-14741, 1995.

F. S. Tedesco, A. Dellavalle, J. Diaz-manera, G. Messina, and G. Cossu, Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells, J. Clin. Invest, vol.120, pp.11-19, 2010.

A. M. Tremblay, E. Missiaglia, G. G. Galli, S. Hettmer, R. Urcia et al., The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation, Cancer Cell, vol.26, pp.273-287, 2014.

R. W. Tsika, C. Schramm, G. Simmer, D. P. Fitzsimons, R. L. Moss et al., Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype, J. Biol. Chem, vol.283, pp.36154-36167, 2008.

R. Tsutsumi, M. Masoudi, A. Takahashi, Y. Fujii, T. Hayashi et al., YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function, Dev. Cell, vol.26, pp.658-665, 2013.

K. Tumaneng, K. Schlegelmilch, R. C. Russell, D. Yimlamai, H. Basnet et al., YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29, Nat. Cell Biol, vol.14, pp.1322-1329, 2012.

H. Vandenburgh and S. Kaufman, In vitro model for stretch-induced hypertrophy of skeletal muscle, Science, vol.203, pp.265-268, 1979.

X. Varelas, P. Samavarchi-tehrani, M. Narimatsu, A. Weiss, K. Cockburn et al., The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-?-SMAD pathway, Dev. Cell, vol.19, pp.831-844, 2010.

S. Visser, Y. , and X. , LATS tumor suppressor: a new governor of cellular homeostasis, Cell Cycle, vol.9, pp.3892-3903, 2010.

H. Wackerhage, D. P. Del-re, R. N. Judson, M. Sudol, and J. Sadoshima, The Hippo signal transduction network in skeletal and cardiac muscle, Sci. Signal, vol.7, pp.4-4, 2014.

H. Wackerhage and A. Ratkevicius, Signal transduction pathways that regulate muscle growth, Essays Biochem, vol.44, pp.99-108, 2008.

K. Wada, K. Itoga, T. Okano, S. Yonemura, and H. Sasaki, Hippo pathway regulation by cell morphology and stress fibers, Development, vol.138, pp.3907-3914, 2011.

C. Wadham, J. R. Gamble, M. A. Vadas, and Y. Khew-goodall, The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates ?-catenin, Mol. Biol. Cell, vol.14, pp.2520-2529, 2003.

N. Wang, J. D. Tytell, and D. E. Ingber, Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol, vol.10, p.75, 2009.

K. I. Watt, R. Judson, P. Medlow, K. Reid, T. B. Kurth et al., Yap is a novel regulator of C2C12 myogenesis, Biochem. Biophys. Res. Commun, vol.393, pp.619-624, 2010.

K. I. Watt, B. J. Turner, A. Hagg, X. Zhang, J. R. Davey et al., The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size, Nat. Commun, vol.6, p.6048, 2015.

B. Wei, W. Dui, D. Liu, Y. Xing, Z. Yuan et al., MST1, a key player, in enhancing fast skeletal muscle atrophy, BMC Biol, vol.11, p.12, 2013.

S. Wu, J. Huang, J. Dong, and D. Pan, hippo Encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts, Cell, vol.114, issue.03, p.549, 2003.

M. Xin, Y. Kim, L. B. Sutherland, M. Murakami, X. Qi et al., Hippo pathway effector Yap promotes cardiac regeneration, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.13839-13844, 2013.

M. Xin, Y. Kim, L. B. Sutherland, X. Qi, J. Mcanally et al., Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size, Sci Signal, vol.4, p.70, 2011.

D. Yaffe and O. Saxel, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle, Nature, vol.270, pp.725-727, 1977.

R. Yagi, L. F. Chen, K. Shigesada, Y. Murakami, and Y. Ito, A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator, EMBO J, vol.18, pp.2551-2562, 1999.

C. Yang, M. W. Tibbitt, L. Basta, and K. S. Anseth, Mechanical memory and dosing influence stem cell fate, Nat. Mater, vol.13, pp.645-652, 2014.

X. Ye, Y. Deng, and Z. Lai, Akt is negatively regulated by Hippo signaling for growth inhibition in Drosophila, Dev. Biol, vol.369, pp.115-123, 2012.

F. Yin, J. Yu, Y. Zheng, Q. Chen, N. Zhang et al., Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2, Cell, vol.154, pp.1342-1355, 2013.

T. Yoshida, MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, Arterioscler. Thromb. Vasc. Biol, vol.28, pp.8-17, 2008.

F. X. Yu, B. Zhao, N. Panupinthu, J. L. Jewell, I. Lian et al., Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling, Cell, vol.150, pp.780-791, 2012.

J. Zhang, J. Y. Ji, M. Yu, M. Overholtzer, G. A. Smolen et al., YAP-dependent induction of amphiregulin identifies a non-cellautonomous component of the Hippo pathway, Nat. Cell Biol, vol.11, pp.1444-1450, 2009.

M. Zhang and I. S. Mclennan, Use of antibodies to identify satellite cells with a light microscope, Muscle Nerve, vol.17, pp.987-994, 1994.

B. Zhao, L. Li, Q. Lu, L. H. Wang, C. Y. Liu et al., Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein, Genes Dev, vol.25, pp.51-63, 2011.

B. Zhao, L. Li, K. Tumaneng, C. Y. Wang, and K. L. Guan, A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(?-TRCP), Genes Dev, vol.24, pp.72-85, 2010.

B. Zhao, L. Li, L. Wang, C. Y. Wang, J. Yu et al., Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis, Genes Dev, vol.26, pp.54-68, 2012.

B. Zhao, X. Wei, W. Li, R. S. Udan, Q. Yang et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev, vol.21, pp.2747-2761, 2007.

B. Zhao, X. Ye, J. Yu, L. Li, W. Li et al., TEAD mediates YAPdependent gene induction and growth control, Genes Dev, vol.22, 1962.

W. Zhong, K. Tian, X. Zheng, L. Li, W. Zhang et al., Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by Yes-associated protein, Stem Cells Dev, vol.22, pp.2083-2093, 2013.

Q. Zhou, L. Li, B. Zhao, and K. L. Guan, The hippo pathway in heart development, regeneration, and diseases, Circ. Res, vol.116, pp.1431-1447, 2015.