G. Livingston, A. Sommerlad, V. Orgeta, S. G. Costafreda, J. Huntley et al., Dementia prevention, intervention, and care, Lancet, vol.390, pp.2673-734, 2017.

L. Robinson, E. Tang, and J. P. Taylor, Dementia: timely diagnosis and early intervention, BMJ, vol.350, p.3029, 2015.

B. C. Stephan, T. Kurth, F. E. Matthews, C. Brayne, and C. Dufouil, Dementia risk prediction in the population: are screening models accurate?, Nat Rev Neurol, vol.6, pp.318-344, 2010.

E. Y. Tang, S. L. Harrison, L. Errington, M. F. Gordon, P. J. Visser et al., Current developments in dementia risk prediction modelling: an updated systematic review, PLoS One, vol.10, p.136181, 2015.

X. H. Hou, L. Feng, C. Zhang, X. P. Cao, L. Tan et al., Models for predicting risk of dementia: a systematic review, J Neurol Neurosurg Psychiatry, vol.90, pp.373-382, 2019.

D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. G. The, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, PLoS Med, vol.6, p.1000097, 2009.

A. L. Dallora, S. Eivazzadeh, E. Mendes, J. Berglund, and P. Anderberg, Machine learning and microsimulation techniques on the prognosis of dementia: a systematic literature review, PLoS One, vol.12, p.179804, 2017.

E. Pellegrini, L. Ballerini, M. Hernandez, F. M. Chappell, V. Gonzalez-castro et al., Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review, Alzheimers Dement (Amst), vol.10, pp.519-554, 2018.

S. Shalev-shwartz, Understanding machine learning: from theory to algorithms. Cambridge: Cambridge University Press, 2014.

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning, p.480, 2012.

K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, and P. P. Sengupta, Machine learning in cardiovascular medicine: are we there yet?, Heart, vol.104, pp.1156-64, 2018.

D. D. Ingram and J. C. Kleinman, Empirical comparisons of proportional hazards and logistic regression models, Stat Med, vol.8, pp.525-563, 1989.

P. Peduzzi, T. Holford, K. Detre, and Y. Chan, Comparison of the logistic and Cox regression models when outcome is determined in all patients after a fixed period of time, J Chronic Dis, vol.40, pp.761-768, 1987.

L. D. Fisher and D. Y. Lin, Time-dependent covariates in the Cox proportional-hazards regression model, Annu Rev Public Health, vol.20, pp.145-57, 1999.

M. J. Pencina, M. G. Larson, D. Agostino, and R. B. , Choice of time scale and its effect on significance of predictors in longitudinal studies, Stat Med, vol.26, pp.1343-59, 2007.

M. Abrahamowicz, R. Berger, and S. A. Grover, Flexible modeling of the effects of serum cholesterol on coronary heart disease mortality, Am J Epidemiol, vol.145, pp.714-743, 1997.

F. E. Harrell, K. L. Lee, and D. B. Mark, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors, Stat Med, vol.15, pp.361-87, 1996.

K. Moons, A. P. Kengne, M. Woodward, P. Royston, Y. Vergouwe et al., Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker, Heart, vol.98, p.683, 2012.

K. Moons, A. P. Kengne, D. E. Grobbee, P. Royston, Y. Vergouwe et al., Risk prediction models: II. External validation, model updating, and impact assessment, Heart, vol.98, p.691, 2012.

G. S. Collins, J. B. Reitsma, D. G. Altman, and K. Moons, Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement, BMC Med, vol.13, p.1, 2015.

T. G. Nick and K. M. Campbell, Logistic regression, Topics in biostatistics, pp.273-301, 2007.

D. Rizopoulos, Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data, Biometrics, vol.67, pp.819-848, 2011.

L. G. Exalto, C. P. Quesenberry, D. Barnes, M. Kivipelto, G. J. Biessels et al., Midlife risk score for the prediction of dementia four decades later, Alzheimers Dement, vol.10, pp.562-70, 2014.