C. Tapparel, F. Siegrist, T. J. Petty, and L. Kaiser, Picornavirus and enterovirus diversity with associated human diseases, Infect., Genet. Evol, vol.14, pp.282-93, 2013.

L. Bauer, H. Lyoo, H. M. Van-der-schaar, J. R. Strating, and F. J. Van-kuppeveld, Direct-acting antivirals and host-targeting strategies to combat enterovirus infections, Curr. Opin. Virol, vol.24, pp.1-8, 2017.

P. L. Rodriguez and L. Carrasco, Poliovirus protein 2C has ATPase and GTPase activities, J. Biol. Chem, vol.268, issue.11, pp.8105-8110, 1993.

T. Pfister and E. Wimmer, Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication, J. Biol. Chem, vol.274, issue.11, pp.6992-7001, 1999.

M. Klein, H. J. Eggers, N. , and B. , , p.9, 1999.

, strain barty non-structural protein 2C has NTPase activity, Virus Res, vol.65, issue.2, pp.155-60

H. Xia, P. Wang, G. C. Wang, J. Yang, X. Sun et al., Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone, PLoS Pathog, vol.11, issue.7, p.1005067, 2015.

M. R. Singleton, M. S. Dillingham, and D. B. Wigley, Structure and mechanism of helicases and nucleic acid translocases, Annu. Rev. Biochem, vol.76, pp.23-50, 2007.

J. P. Li and D. Baltimore, An intragenic revertant of a poliovirus 2C mutant has an uncoating defect, J. Virol, vol.64, issue.3, pp.1102-1107, 1990.

M. W. Cho, N. Teterina, D. Egger, K. Bienz, and E. Ehrenfeld, Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells, Virology, vol.202, issue.1, pp.129-174, 1994.

R. Aldabe and L. Carrasco, Induction of membrane proliferation by poliovirus proteins 2C and 2BC, Biochem. Biophys. Res. Commun, vol.206, issue.1, pp.64-76, 1995.

N. L. Teterina, A. E. Gorbalenya, D. Egger, K. Bienz, and E. Ehrenfeld, Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells, J. Virol, vol.71, issue.12, pp.8962-8972, 1997.

D. A. Suhy, T. H. Giddings, . Jr, and K. Kirkegaard, Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles, J. Virol, vol.74, issue.19, pp.8953-65, 2000.

R. Banerjee, A. Echeverri, and A. Dasgupta, Poliovirusencoded 2C polypeptide specifically binds to the 3?-terminal sequences of viral negative-strand RNA, J. Virol, vol.71, issue.12, pp.9570-9578, 1997.

R. Banerjee and A. Dasgupta, Interaction of picornavirus 2C polypeptide with the viral negative-strand RNA, J. Gen. Virol, vol.82, issue.11, pp.2621-2627, 2001.

R. Banerjee, W. Tsai, W. Kim, and A. Dasgupta, Interaction of poliovirus-encoded 2C/2BC polypeptides with the 3? terminus negative-strand cloverleaf requires an intact stem-loop b, Virology, vol.280, issue.1, pp.41-51, 2001.

J. P. Li and D. Baltimore, Isolation of poliovirus 2C mutants defective in viral RNA synthesis, J. Virol, vol.62, issue.11, pp.4016-4021, 1988.

N. L. Teterina, K. M. Kean, A. E. Gorbalenya, V. I. Agol, and M. Girard, Analysis of the functional significance of amino acid residues in the putative NTP-binding pattern of the poliovirus 2C protein, J. Gen. Virol, vol.73, issue.8, 1977.

E. A. Tolskaya, L. I. Romanova, M. S. Kolesnikova, A. P. Gmyl, A. E. Gorbalenya et al., Genetic studies on the poliovirus 2C protein, an NTPase. A plausible mechanism of guanidine effect on the 2C function and evidence for the importance of 2C oligomerization, J. Mol. Biol, vol.236, issue.5, pp.1310-1333, 1994.

D. J. Barton and J. B. Flanegan, Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C, J. Virol, vol.71, issue.11, pp.8482-8489, 1997.

N. L. Teterina, E. Levenson, M. S. Rinaudo, D. Egger, K. Bienz et al., Evidence for functional protein interactions required for poliovirus RNA replication, J. Virol, vol.80, issue.11, pp.5327-5364, 2006.

W. F. Tang, S. Y. Yang, B. W. Wu, J. R. Jheng, Y. L. Chen et al., Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication, J. Biol. Chem, vol.282, issue.8, pp.5888-98, 2007.

Z. Zheng, H. Li, Z. Zhang, J. Meng, D. Mao et al., Enterovirus 71 2C protein inhibits TNF-alpha-mediated activation of NF-kappaB by suppressing IkappaB kinase beta phosphorylation, J. Immunol, vol.187, issue.5, pp.2202-2214, 2011.

L. M. Vance, N. Moscufo, M. Chow, and B. A. Heinz, , 1997.

, Poliovirus 2C region functions during encapsidation of viral RNA, J. Virol, vol.71, issue.11, pp.8759-8765

Y. Verlinden, A. Cuconati, E. Wimmer, and B. Rombaut, The antiviral compound 5-(3,4-dichlorophenyl) methylhydantoin inhibits the post-synthetic cleavages and the assembly of poliovirus in a cell-free system, Antiviral Res, vol.48, issue.1, pp.61-70, 2000.

Y. Liu, C. Wang, S. Mueller, A. V. Paul, E. Wimmer et al., Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis, PLoS Pathog, vol.6, issue.8, p.1001066, 2010.

C. Wang, H. C. Ma, E. Wimmer, P. Jiang, A. V. Paul et al., A C-terminal, cysteine-rich site in poliovirus 2C(ATPase) is required for morphogenesis, Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses, vol.95, pp.4529-4562, 2014.

D. Hadaschik, M. Klein, H. Zimmermann, H. J. Eggers, N. et al., Dependence of echovirus 9 on the enterovirus RNA replication inhibitor 2-(alpha-Hydroxybenzyl)-benzimidazole maps to nonstructural protein 2C, J. Virol, vol.73, issue.12, pp.10536-10539, 1999.

A. M. De-palma, W. Heggermont, K. Lanke, B. Coutard, M. Bergmann et al., The thiazolobenzimidazole TBZE-029 inhibits enterovirus replication by targeting a short region immediately downstream from motif C in the nonstructural protein 2C, J. Virol, vol.82, issue.10, pp.4720-4750, 2008.

H. Shimizu, M. Agoh, Y. Agoh, H. Yoshida, K. Yoshii et al., Mutations in the 2C region of poliovirus responsible for altered sensitivity to benzimidazole derivatives, J. Virol, vol.74, issue.9, pp.4146-54, 2000.

T. T. Ashburn, T. , and K. B. , Drug repositioning: identifying and developing new uses for existing drugs, Nat. Rev. Drug Discovery, vol.3, issue.8, pp.673-83, 2004.

B. Mercorelli, G. Palu, and A. Loregian, Drug Repurposing for Viral Infectious Diseases: How Far Are We?, Trends Microbiol, vol.26, issue.10, pp.865-876, 2018.

J. Zuo, K. K. Quinn, S. Kye, P. Cooper, R. Damoiseaux et al., Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication, Antimicrob. Agents Chemother, vol.56, issue.9, pp.4838-4844, 2012.

R. Ulferts, L. Van-der-linden, H. J. Thibaut, K. H. Lanke, P. Leyssen et al., Selective serotonin reuptake inhibitor fluoxetine inhibits replication of human enteroviruses B and D by targeting viral protein 2C, Antimicrob. Agents Chemother, vol.57, issue.4, pp.1952-1958, 2013.

R. Ulferts, M. De-boer, L. Van-der-linden, L. Bauer, H. R. Lyoo et al., Screening of a library of FDA-approved drugs identifies several enterovirus replicaton inhibitors that target viral protein 2C, Antimicrob. Agents Chemother, vol.60, p.2627, 2016.

K. C. Young, C. H. Bai, H. C. Su, P. J. Tsai, C. Y. Pu et al., Fluoxetine a novel anti-hepatitis C virus agent via ROS-, JNK-, and PPARbeta/gamma-dependent pathways, Antiviral Res, vol.110, pp.158-67, 2014.

G. R. Medigeshi, R. Kumar, E. Dhamija, T. Agrawal, and M. Kar, N-Desmethylclozapine, Fluoxetine, and Salmeterol Inhibit Postentry Stages of the Dengue Virus Life Cycle, Antimicrob. Agents Chemother, vol.60, issue.11, pp.6709-6718, 2016.

J. Gofshteyn, A. M. Cardenas, and D. Bearden, Treatment of Chronic Enterovirus Encephalitis With Fluoxetine in a Patient With X-Linked Agammaglobulinemia, Pediatr Neurol, vol.64, p.94, 2016.

H. Guan, J. Tian, B. Qin, J. A. Wojdyla, B. Wang et al., Crystal structure of 2C helicase from enterovirus 71, Sci. Adv, vol.3, issue.4, p.1602573, 2017.

D. W. Robertson, N. D. Jones, J. K. Swartzendruber, K. S. Yang, and D. T. Wong, Molecular structure of fluoxetine hydrochloride, a highly selective serotonin-uptake inhibitor, J. Med. Chem, vol.31, issue.1, pp.185-194, 1988.

J. Zuo, S. Kye, K. K. Quinn, P. Cooper, R. Damoiseaux et al., Discovery of Structurally Diverse Small-Molecule Compounds with Broad Antiviral Activity against Enteroviruses, Antimicrob. Agents Chemother, vol.60, issue.3, pp.1615-1641, 2016.

L. Albulescu, R. Wubbolts, F. J. Van-kuppeveld, and J. R. Strating, Cholesterol shuttling is important for RNA replication of coxsackievirus B3 and encephalomyocarditis virus, Cell. Microbiol, vol.17, p.1144, 2015.

J. R. Strating, L. Van-der-linden, L. Albulescu, J. Bigay, M. Arita et al., Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein, Cell Rep, vol.10, issue.4, pp.600-615, 2015.

B. Coutard, E. Decroly, C. Li, A. Sharff, J. Lescar et al., Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery, Antiviral Res, vol.106, pp.61-70, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02061701

P. Adams, E. Kandiah, G. Effantin, A. C. Steven, and E. Ehrenfeld, Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity, J. Biol. Chem, vol.284, issue.33, pp.22012-22033, 2009.

T. R. Sweeney, V. Cisnetto, D. Bose, M. Bailey, J. R. Wilson et al., Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism, J. Biol. Chem, vol.285, issue.32, pp.24347-59, 2010.

H. M. Van-der-schaar, P. Leyssen, H. J. Thibaut, A. De-palma, L. Van-der-linden et al., A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIbeta, Antimicrob. Agents Chemother, vol.57, issue.10, pp.4971-81, 2013.

A. M. Macleod, D. R. Mitchell, N. J. Palmer, H. Van-de-poel, K. Conrath et al., Identification of a series of compounds with potent antiviral activity for the treatment of enterovirus infections, ACS Med. Chem. Lett, vol.4, issue.7, pp.585-594, 2013.

H. J. Thibaut, C. K. Lee, B. Coutard, L. Van-der-linden, B. Canard et al., A novel class of highly potent small molecule inhibitors of entero/rhinovirus replication that target the non structural protein 2C, 2013.

C. C. Holm-hansen, S. E. Midgley, and T. K. Fischer, Global emergence of enterovirus D68: a systematic review, Lancet Infect. Dis, vol.16, issue.5, pp.64-75, 2016.

A. M. Hixon, P. Clarke, and K. L. Tyler, Evaluating Treatment Efficacy in a Mouse Model of Enterovirus D68-Associated Paralytic Myelitis, J. Infect. Dis, vol.216, issue.10, pp.1245-1253, 2017.

K. Messacar, S. Sillau, S. E. Hopkins, C. Otten, M. Wilson-murphy et al., ACS Infectious Diseases

T. Schreiner, N. Makhani, R. L. Debiasi, M. C. Kruer, A. H. Tremoulet et al., Safety, tolerability, and efficacy of fluoxetine as an antiviral for acute flaccid myelitis, Neurology, vol.92, issue.18, pp.2118-2126, 2019.

M. A. Benkahla, E. K. Alidjinou, F. Sane, R. Desailloud, and D. Hober, Fluoxetine can inhibit coxsackievirus-B4 E2 in vitro and in vivo, Antiviral Res, vol.159, pp.130-133, 2018.

J. D. Amsterdam, J. Fawcett, F. M. Quitkin, F. W. Reimherr, J. F. Rosenbaum et al., Fluoxetine and norfluoxetine plasma concentrations in major depression: a multicenter study, Am. J. Psychiatry, vol.154, issue.7, pp.963-969, 1997.

P. Backes, D. Quinkert, S. Reiss, M. Binder, M. Zayas et al., Role of annexin A2 in the production of infectious hepatitis C virus particles, J. Virol, vol.84, issue.11, pp.5775-89, 2010.

K. H. Lanke, H. M. Van-der-schaar, G. A. Belov, Q. Feng, D. Duijsings et al.,

, GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication, J. Virol, vol.83, issue.22, pp.11940-11949

E. Wessels, D. Duijsings, K. H. Lanke, S. H. Van-dooren, C. L. Jackson et al., Effects of picornavirus 3A Proteins on Protein Transport and GBF1-dependent COP-I recruitment, Am. J. Epidemiol, vol.80, issue.23, pp.493-497, 1938.

D. A. Case, T. A. Darden, T. E. Cheatham, . Iii, C. L. Simmerling et al., , vol.12, 2012.

P. R. Gerber and K. Muller, MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry, J. Comput.-Aided Mol. Des, vol.9, issue.3, pp.251-68, 1995.

P. Labute, The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area, J. Comput. Chem, vol.29, issue.10, pp.1693-1701, 2008.

S. C. Lovell, I. W. Davis, W. B. Arendall, P. I. De-bakker, J. M. Word et al., Structure validation by Calpha geometry: phi,psi and Cbeta deviation, Proteins: Struct., Funct., Genet, vol.50, pp.437-450, 2003.

J. U. Bowie, R. Luthy, and D. Eisenberg, A method to identify protein sequences that fold into a known three-dimensional structure, Science, vol.253, issue.5016, pp.164-70, 1991.

R. Luthy, J. U. Bowie, and D. Eisenberg, Assessment of protein models with three-dimensional profiles, Nature, vol.356, issue.6364, pp.83-88, 1992.

C. Colovos and T. O. Yeates, Verification of protein structures: patterns of nonbonded atomic interactions, Protein Sci, vol.2, issue.9, pp.1511-1520, 1993.

J. Pontius, J. Richelle, and S. J. Wodak, Deviations from standard atomic volumes as a quality measure for protein crystal structures, J. Mol. Biol, vol.264, issue.1, pp.121-157, 1996.

, ACS Infectious Diseases Article DOI: 10.1021/acsinfecdis.9b00179 ACS Infect. Dis, vol.5, pp.1609-1623, 2019.