P. C. Nowell, The clonal evolution of tumor cell populations, Science, vol.194, issue.4260, pp.23-28, 1976.

M. Gerstung, C. Jolly, I. Leshchiner, S. C. Dentro, K. Yu et al., The evolutionary history of 2,658 cancers, 2017.

S. C. Dentro, D. C. Wedge, V. Loo, and P. , Principles of Reconstructing the Subclonal Architecture of Cancers. Cold Spring Harbor perspectives in medicine, vol.7, p.26625, 2017.

N. Beerenwinkel, R. F. Schwarz, M. Gerstung, and F. Markowetz, Cancer evolution: Mathematical models and computational inference, Systematic Biology, vol.64, issue.1, pp.1-25, 2015.

R. Schwartz and . Schä, The evolution of tumour phylogenetics: Principles and practice, Nature Reviews Genetics, vol.18, issue.4, pp.213-229, 2017.

A. Roth, J. Khattra, D. Yap, A. Wan, E. Laks et al., Statistical inference of clonal population structure in cancer, Nature Methods, vol.11, issue.4, pp.396-398, 2014.

C. A. Miller, B. S. White, N. D. Dees, M. Griffith, J. S. Welch et al., Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution, PLoS Computational Biology, vol.10, issue.8, p.1003665, 2014.

A. G. Deshwar, S. Vembu, C. K. Yung, G. H. Jang, L. Stein et al., PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors, Genome Biology, vol.16, issue.1, pp.1-20, 2015.

N. Andor, J. V. Harness, S. Müller, H. W. Mewes, and C. Petritsch, Expands: Expanding ploidy and allele frequency on nested subpopulations, Bioinformatics, vol.30, issue.1, pp.50-60, 2014.

K. Jahn, J. Kuipers, and N. Beerenwinkel, Tree inference for single-cell data, Genome Biology, vol.17, issue.1, p.27149953, 2016.

A. Davis and N. E. Navin, Computing tumor trees from single cells, Genome Biology, vol.17, issue.1, pp.1-4, 2016.

S. Ciccolella, S. Gomez, M. Patterson, M. , D. Vedova et al., Inferring Cancer Progression from Single-cell Sequencing while Allowing Mutation Losses. bioRxiv, p.268243, 2018.

L. Morris, N. Riaz, A. Desrichard, Y. ?enbabao?lu, A. A. Hakimi et al., Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival, Oncotarget, vol.7, issue.9, 2016.

N. Andor, T. A. Graham, M. Jansen, L. C. Xia, C. A. Aktipis et al., Pan-cancer analysis of the extent and consequences of intratumor heterogeneity, Nature Medicine, vol.22, issue.1, pp.105-113, 2016.

N. Mcgranahan and C. Swanton, Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future, Cell, vol.168, issue.4, pp.613-628, 2017.

S. C. Dentro, I. Leshchiner, K. Haase, M. Tarabichi, J. Wintersinger et al., Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types. bioRxiv, p.312041, 2018.

I. Dagogo-jack and A. T. Shaw, Tumour heterogeneity and resistance to cancer therapies, Nature Reviews Clinical Oncology, vol.15, issue.2, pp.81-94, 2018.

S. Nik-zainal, V. Loo, P. Wedge, D. C. Alexandrov, L. B. Greenman et al., The life history of 21 breast cancers, Cell, vol.149, issue.5, pp.994-1007, 2012.

M. Gerlinger, S. Horswell, J. Larkin, A. J. Rowan, M. P. Salm et al., Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing, Nature Genetics, vol.46, issue.3, pp.225-233, 2014.

N. E. Navin, Tumor evolution in response to chemotherapy: Phenotype versus genotype, Cell Reports, vol.6, issue.3, pp.417-419, 2014.

N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers et al., Tumour evolution inferred by single-cell sequencing, Nature, vol.472, issue.7341, pp.90-95, 2011.

J. Noorbakhsh, H. Kim, S. Namburi, and J. H. Chuang, Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power, Scientific Reports, vol.8, issue.1, pp.1-12, 2018.

A. Colaprico, T. C. Silva, C. Olsen, L. Garofano, C. Cava et al., TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data, Nucleic Acids Research, vol.44, issue.8, p.71, 2016.

J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal, Science Signaling, vol.6, issue.269, 2013.

I. Martincorena, K. M. Raine, M. Gerstung, K. J. Dawson, K. Haase et al., Universal Patterns of Selection in Cancer and Somatic Tissues, Cell, vol.171, issue.5, pp.1029-1041, 2017.

S. A. Forbes, D. Beare, H. Boutselakis, S. Bamford, N. Bindal et al., COSMIC: Somatic cancer genetics at high-resolution, Nucleic Acids Research, vol.45, issue.D1, pp.777-783, 2017.

B. Gao, Q. Huang, and M. Baudis, segment_liftover: a Python tool to convert segments between genome assemblies, vol.7, p.319, 2018.

D. Aran, M. Sirota, and A. J. Butte, Systematic pan-cancer analysis of tumour purity, Nature communications, vol.6, p.8971, 2015.

S. L. Carter, K. Cibulskis, E. Helman, A. Mckenna, H. Shen et al., Absolute quantification of somatic DNA alterations in human cancer, Nature Biotechnology, vol.30, issue.5, pp.413-421, 2012.

E. A. Mroz and J. W. Rocco, MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma, Oral Oncology, vol.49, issue.3, pp.211-215, 2013.

C. Davidson-pilon, J. Kalderstam, P. Zivich, B. Kuhn, A. Fiore-gartland et al.,

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, vol.57, issue.1, pp.289-300, 1995.

V. Van-belle, K. Pelckmans, S. Van-huffel, and J. Suykens, Support vector methods for survival analysis: A comparison between ranking and regression approaches, Artificial Intelligence in Medicine, vol.53, issue.2, pp.107-118, 2011.

S. Pö-lsterl, P. Gupta, L. Wang, S. Conjeti, A. Katouzian et al., Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients, vol.5, p.2676, 2017.

M. S. Schrö-der, A. C. Culhane, J. Quackenbush, and B. Haibe-kains, survcomp: An R/Bioconductor package for performance assessment and comparison of survival models, Bioinformatics, vol.27, issue.22, pp.3206-3208, 2011.

M. J. Pencina, D. Agostino, and R. B. , OverallC as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation, Statistics in Medicine, vol.23, issue.13, pp.2109-2123, 2004.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol.15, issue.12, 2014.

G. Bindea, B. Mlecnik, M. Tosolini, A. Kirilovsky, M. Waldner et al., Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer, Immunity, vol.39, issue.4, pp.782-795, 2013.

D. R. Zerbino, P. Achuthan, W. Akanni, M. R. Amode, D. Barrell et al., Nucleic Acids Research, vol.46, issue.D1, pp.754-761, 2018.

A. Salcedo, M. Tarabichi, S. Espiritu, A. G. Deshwar, A. Buchanan et al., Creating Standards for Evaluating Tumour Subclonal Reconstruction, 2018.

A. Rosenberg and J. Hirschberg, V-measure: A conditional entropy-based external cluster evaluation measure, Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language (EMNLP-CoNLL'07), vol.1, pp.410-420, 2007.

S. Malikic, K. Jahn, J. Kuipers, S. C. Sahinalp, and N. Beerenwinkel, Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data, Nature Communications, vol.10, issue.1, pp.1-12, 2019.

C. Gawad, W. Koh, and S. R. Quake, Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics, Proceedings of the National Academy of Sciences of the United States of America, vol.111, issue.50, pp.17947-17952, 2014.

Y. Wang, J. Waters, M. L. Leung, A. Unruh, W. Roh et al., Clonal evolution in breast cancer revealed by single nucleus genome sequencing, Nature, vol.512, issue.7513, pp.155-160, 2014.

M. L. Leung, A. Davis, R. Gao, A. Casasent, Y. Wang et al., Single-cell DNA sequencing reveals a latedissemination model in metastatic colorectal cancer, Genome Research, vol.27, issue.8, pp.1287-1299, 2017.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, vol.25, pp.1754-1760, 2009.

B. P. Institute and . Tools,

, Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data, PLOS ONE, 2019.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, vol.26, pp.841-842, 2010.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment / Map format and SAMtools, vol.25, pp.2078-2079, 2009.

A. Mckenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data, pp.1297-1303, 2010.

K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Jaffe et al., Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples, Nature Biotechnology, vol.31, issue.3, pp.213-219, 2013.

R. Shen and V. E. Seshan, FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing, pp.1-9, 2016.

B. Pereira, S. F. Chin, O. M. Rueda, H. Vollan, E. Provenzano et al., The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes, Nature Communications, vol.7, p.11479, 2016.

T. Karn, T. Jiang, C. Hatzis, N. Sä-nger, A. El-balat et al., Association Between Genomic Metrics and Immune Infiltration in Triple-Negative Breast Cancer, JAMA Oncology, vol.3, issue.12, pp.1707-1711, 2017.

S. Venkatesan and C. Swanton, Tumor Evolutionary Principles: How Intratumor Heterogeneity Influences Cancer Treatment and Outcome, Clinical Oncology Educational Book, vol.36, pp.141-149, 2016.

J. Eaton, J. Wang, and R. Schwartz, Deconvolution and phylogeny inference of structural variations in tumor genomic samples, Bioinformatics, vol.34, issue.13, pp.357-365, 2018.

V. Bhandari, L. Y. Liu, A. Salcedo, S. Espiritu, Q. D. Morris et al., The Inter and Intra-Tumoural Heterogeneity of Subclonal Reconstruction. bioRxiv, 2018.

S. Turajlic and C. Swanton, TRACERx Renal: tracking renal cancer evolution through therapy, Nature Reviews Urology, vol.14, issue.10, pp.575-576, 2017.

C. Kim, R. Gao, E. Sei, R. Brandt, J. Hartman et al., Chemoresistance Evolution in Triple-Negative, Breast Cancer Delineated by Single-Cell Sequencing. Cell, vol.173, issue.4, pp.879-893, 2018.

W. Shi, C. Ng, R. S. Lim, T. Jiang, S. Kumar et al., Reliability of Whole-Exome Sequencing for Assessing Intratumor Genetic Heterogeneity, 2018.

H. Zhou, D. Neelakantan, and H. L. Ford, Clonal cooperativity in heterogenous cancers, Seminars in Cell & Developmental Biology, vol.64, pp.79-89, 2017.

N. Mcgranahan, F. Favero, D. Bruin, E. C. Birkbak, N. J. Szallasi et al., Clonal status of actionable driver events and the timing of mutational processes in cancer evolution, Science Translational Medicine, vol.7, issue.283, pp.283-54, 2015.

J. J. Keats, M. Chesi, J. B. Egan, V. M. Garbitt, S. E. Palmer et al., Clonal competition with alternating dominance in multiple myeloma, Blood, vol.120, issue.5, pp.1067-1076, 2012.

J. Scott and A. Marusyk, Somatic clonal evolution: A selection-centric perspective, Biochimica et Biophysica Acta-Reviews on Cancer, vol.1867, issue.2, pp.139-150, 2017.

W. Cross, T. A. Graham, and N. A. Wright, New paradigms in clonal evolution: punctuated equilibrium in cancer, Journal of Pathology, vol.240, issue.2, pp.126-136, 2016.

A. Sottoriva, C. P. Barnes, and T. A. Graham, Catch my drift? Making sense of genomic intra-tumour heterogeneity, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, vol.1867, issue.2, pp.95-100, 2017.

C. C. Maley, A. Aktipis, T. A. Graham, A. Sottoriva, A. M. Boddy et al., Classifying the evolutionary and ecological features of neoplasms, Nature Reviews Cancer, vol.17, issue.10, pp.605-619, 2017.

A. Safonov, T. Jiang, G. Bianchini, B. Gy?rffy, T. Karn et al., Immune Gene Expression Is Associated with Genomic Aberrations in Breast Cancer, Cancer Research, vol.77, issue.12, pp.3317-3324, 2017.

G. Caravagna, T. Heide, M. Williams, L. Zapata, D. Nichol et al., Model-based tumor subclonal reconstruction, pp.1-31, 2019.