S. Ghio, A. Gavazzi, and C. Campana, Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure, J Am Coll Cardiol, vol.37, issue.1, pp.183-188, 2001.

A. Rosenzweig, Cardiac cell therapy-mixed results from mixed cells, N Engl J Med, vol.355, issue.12, pp.1274-1277, 2006.

T. J. Povsic, Current state of stem cell therapy for ischemic heart disease, Curr Cardiol Rep, vol.18, issue.2, p.17, 2016.

V. Gurtu and E. D. Michelakis, Emerging therapies and future directions in pulmonary arterial hypertension, Can J Cardiol, vol.31, issue.4, pp.489-501, 2015.

G. Simonneau, M. A. Gatzoulis, and I. Adatia, Updated clinical classification of pulmonary hypertension, J Am Coll Cardiol, vol.62, pp.34-41, 1925.

M. M. Hoeper, R. Simon, and J. Gibbs, The changing landscape of pulmonary arterial hypertension and implications for patient care, Eur Respir Rev, vol.23, issue.134, pp.450-457, 2014.

, Representative markers of stem cells usable for right ventricle cell therapy. Pulmonary Circulation Volume, vol.8

V. V. Mclaughlin, S. J. Shah, and R. Souza, Management of pulmonary arterial hypertension, J Am Coll Cardiol, vol.65, issue.18, pp.1976-1997, 2015.

S. Ghio, A. Gavazzi, and C. Campana, Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure, J Am Coll Cardiol, vol.37, issue.1, pp.183-188, 2001.

J. J. Ryan, J. Huston, and S. Kutty, Right ventricular adaptation and failure in pulmonary arterial hypertension, Can J Cardiol, vol.31, issue.4, pp.391-406, 2015.

A. Harrison, N. Hatton, and J. J. Ryan, The right ventricle under pressure: evaluating the adaptive and maladaptive changes in the right ventricle in pulmonary arterial hypertension using echocardiography, Pulm Circ, vol.5, issue.1, pp.29-47, 2013.

J. J. Ryan and S. L. Archer, The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure, Circ Res, vol.115, issue.1, pp.176-188, 2014.

A. Vonk-noordegraaf, F. Haddad, and K. M. Chin, Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology, J Am Coll Cardiol, vol.62, pp.22-33, 1925.

J. J. Ryan and S. L. Archer, Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension, Circulation, vol.131, pp.1691-1702, 2015.

H. J. Bogaard, R. Natarajan, and S. C. Henderson, Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure, Circulation, vol.120, issue.20, pp.1951-1960, 2009.

G. Ruiter, Y. Wong, Y. De-man, and F. S. , Right ventricular oxygen supply parameters are decreased in human and experimental pulmonary hypertension, J Heart Lung Transplant, vol.32, issue.2, pp.231-240, 2013.

A. Go´mez, D. Bialostozky, and A. Zajarias, Right ventricular ischemia in patients with primary pulmonary hypertension, J Am Coll Cardiol, vol.38, issue.4, pp.1137-1142, 2001.

G. Sutendra, P. Dromparis, and R. Paulin, A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension, J Mol Med (Berl), vol.91, issue.11, pp.1315-1327, 2013.

T. Sarashina, K. Nakamura, and S. Akagi, Reverse right ventricular remodeling after lung transplantation in patients with pulmonary arterial hypertension under combination therapy of targeted medical drugs, Circ J, vol.81, issue.3, pp.383-390, 2017.

I. J. Fuss, M. E. Kanof, and P. D. Smith, Isolation of whole mononuclear cells from peripheral blood and cord blood, Curr Protoc Immunol, issue.1, 2009.

E. B. Peters, B. Liu, and N. Christoforou, Umbilical cord bloodderived mononuclear cells exhibit pericyte-like phenotype and support network formation of endothelial progenitor cells in vitro, Ann Biomed Eng, vol.43, issue.10, pp.2552-2568, 2015.

R. Rohban, B. Prietl, and T. R. Pieber, Crosstalk between stem and progenitor cellular mediators with special emphasis on vasculogenesis, Transfus Med Hemotherapy, vol.44, issue.3, pp.174-182, 2017.

S. Oommen, S. Yamada, C. Peral, and S. , Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload, Stem Cell Res Ther, vol.6, p.50, 2015.

A. R. Smith and J. E. Wagner, Alternative haematopoietic stem cell sources for transplantation: place of umbilical cord blood

, Br J Haematol, vol.147, issue.2, pp.246-261, 2009.

C. Peral, S. Burkhart, H. M. Oommen, and S. , Safety and feasibility for pediatric cardiac regeneration using epicardial delivery of autologous umbilical cord blood-derived mononuclear cells established in a porcine model system, Stem Cells Transl Med, vol.4, issue.2, pp.195-206, 2015.

C. Yerebakan, E. Sandica, and S. Prietz, Autologous umbilical cord blood mononuclear cell transplantation preserves right ventricular function in a novel model of chronic right ventricular volume overload, Cell Transplant, vol.18, issue.8, pp.855-868, 2009.

B. Davies, N. J. Elwood, and S. Li, Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training, Ann Thorac Surg, vol.89, issue.2, pp.585-593, 2010.

F. Vallone, V. B. Romaniuk, M. A. Choi, and H. , Mesenchymal stem cells and their use in therapy: what has been achieved?, Differ Res Biol Divers, vol.85, issue.1-2, pp.1-10, 2013.

A. Van-der-laarse, C. M. Cobbaert, and S. Umar, Stem and progenitor cell therapy for pulmonary arterial hypertension: effects on the right ventricle, Grover Conference Series). Pulm Circ, vol.5, issue.1, pp.73-80, 2013.

A. Burlacu, G. Grigorescu, and A. Rosca, Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro, Stem Cells Dev, vol.22, issue.4, pp.643-653, 2013.

. Castro-manrreza-me and J. J. Montesinos, Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications, J Immunol Res, p.394917, 2015.

S. Rankin, Mesenchymal stem cells, Thorax, vol.67, issue.6, pp.565-566, 2012.

R. Hass, C. Kasper, and S. Bo¨hm, Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC, Cell Commun Signal, vol.9, p.12, 2011.

S. Umar, Y. P. Visser, and P. Steendijk, Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension, Am J Physiol Heart Circ Physiol, vol.297, issue.5, pp.1606-1616, 2009.

H. Lee, J. C. Lee, and J. H. Kwon, The effect of umbilical cord blood derived mesenchymal stem cells in monocrotalineinduced pulmonary artery hypertension rats, J Korean Med Sci, vol.30, issue.5, pp.576-585, 2015.

Y. Luan, X. Zhang, and F. Kong, Mesenchymal stem cell prevention of vascular remodeling in high flow-induced pulmonary hypertension through a paracrine mechanism, Int Immunopharmacol, vol.14, issue.4, pp.432-437, 2012.

Y. Zhang, S. Liao, and M. Yang, Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension, Cell Transplant, vol.21, issue.10, pp.2225-2239, 2012.

S. R. Baber, W. Deng, and R. G. Master, Intratracheal mesenchymal stem cell administration attenuates monocrotalineinduced pulmonary hypertension and endothelial dysfunction

, Am J Physiol Heart Circ Physiol, vol.292, issue.2, pp.1120-1128, 2007.

S. Kanki-horimoto, H. Horimoto, and S. Mieno, Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension, Circulation, vol.114, issue.1, pp.181-185, 2006.

O. D. Liang, S. A. Mitsialis, and M. S. Chang, Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension, Stem Cells, vol.29, issue.1, pp.99-107, 2011.

H. Kang, K. Kim, and J. Lim, The therapeutic effects of human mesenchymal stem cells primed with sphingosine-1 phosphate on pulmonary artery hypertension, Stem Cells Dev, vol.24, issue.14, pp.1658-1671, 2015.

E. J. Molina, J. Palma, and D. Gupta, Right ventricular effects of intracoronary delivery of mesenchymal stem cells (MSC) in an animal model of pressure overload heart failure, Biomed Pharmacother, vol.63, issue.10, pp.767-772, 2009.

J. M. Melero-martin, D. Obaldia, M. E. Kang, and S. , Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells, Circ Res, vol.103, issue.2, pp.194-202, 2008.

T. Asahara, T. Murohara, and A. Sullivan, Isolation of putative progenitor endothelial cells for angiogenesis, Science, vol.275, issue.5302, pp.964-967, 1997.

K. Yamamoto, T. Takahashi, and T. Asahara, Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress, J Appl Physiol, vol.95, issue.5, pp.2081-2088, 1985.

L. Tilling, P. Chowienczyk, and B. Clapp, Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells

, Br J Clin Pharmacol, vol.68, issue.4, pp.484-492, 2009.

M. R. , D. Caterina, and R. , Circulating endothelial progenitor cells: Do they live up to their name?, Vascul Pharmacol, pp.67-69, 2015.

N. Mukai, T. Akahori, and M. Komaki, A comparison of the tube forming potentials of early and late endothelial progenitor cells, Exp Cell Res, vol.314, issue.3, pp.430-440, 2008.

C. Cheng, S. Chang, and Y. Chueh, Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses, BMC Genomics, vol.14, p.182, 2013.

G. P. Fadini, D. Losordo, and S. Dimmeler, Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use, Circ Res, vol.110, issue.4, pp.624-637, 2012.

R. J. Medina, C. L. Barber, and F. Sabatier, Endothelial progenitors: a consensus statement on nomenclature, Stem Cells Transl Med, vol.6, issue.5, pp.1316-1320, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01777824

J. Boyer-di-ponio, F. El-ayoubi, and F. Glacial, Instruction of circulating endothelial progenitors in vitro towards specialized blood-brain barrier and arterial phenotypes, PLoS One, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01068695

T. Murohara, H. Ikeda, and J. Duan, Transplanted cord bloodderived endothelial precursor cells augment postnatal neovascularization, J Clin Invest, vol.105, issue.11, pp.1527-1536, 2000.

A. Flex, F. Biscetti, and M. G. Iachininoto, Human cord blood endothelial progenitors promote post-ischemic angiogenesis in immunocompetent mouse model, Thromb Res, vol.141, pp.106-111, 2016.

X. Peng, Y. Bai, and J. R. James, Transplanted endothelial progenitor cells improve ischemia muscle regeneration in mice by diffusion tensor MR imaging, Stem Cells Int, p.3641401, 2016.

S. Kim, H. L. Jin, and S. Kang, Therapeutic effects of late outgrowth endothelial progenitor cells or mesenchymal stem cells derived from human umbilical cord blood on infarct repair, Int J Cardiol, vol.203, pp.498-507, 2016.

P. Au, L. M. Daheron, and D. G. Duda, Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional longlasting vessels, Blood, vol.111, issue.3, pp.1302-1305, 2008.

H. Yip, L. Chang, and C. Sun, Autologous transplantation of bone marrow-derived endothelial progenitor cells attenuates monocrotaline-induced pulmonary arterial hypertension in rats, Crit Care Med, vol.36, issue.3, pp.873-880, 2008.

L. Xia, G. Fu, Y. , and J. , Endothelial progenitor cells may inhibit apoptosis of pulmonary microvascular endothelial cells: new insights into cell therapy for pulmonary arterial hypertension, Cytotherapy, vol.11, issue.4, pp.492-502, 2009.

R. Mirsky, S. Jahn, and J. W. Koskenvuo, Treatment of pulmonary arterial hypertension with circulating angiogenic cells

, Am J Physiol Lung Cell Mol Physiol, vol.301, issue.1, pp.12-19, 2011.

M. L. Ormiston, Y. Deng, and D. J. Stewart, Innate immunity in the therapeutic actions of endothelial progenitor cells in pulmonary hypertension, Am J Respir Cell Mol Biol, vol.43, issue.5, pp.546-554, 2010.

L. Zhou, Z. Chen, and P. Vanderslice, Endothelial-like progenitor cells engineered to produce prostacyclin rescue monocrotaline-induced pulmonary arterial hypertension and provide right ventricle benefits, Circulation, vol.128, issue.9, pp.982-994, 2013.

Y. D. Zhao, D. W. Courtman, and Y. Deng, Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease, Circ Res, vol.96, issue.4, pp.442-450, 2005.

C. Yen, T. Tsai, and S. Leu, Sildenafil improves long-term effect of endothelial progenitor cell-based treatment for monocrotaline-induced rat pulmonary arterial hypertension, Cytotherapy, vol.15, issue.2, pp.209-223, 2013.

C. Sun, F. Lee, and J. Sheu, Early combined treatment with cilostazol and bone marrow-derived endothelial progenitor cells markedly attenuates pulmonary arterial hypertension in rats, J Pharmacol Exp Ther, vol.330, issue.3, pp.718-726, 2009.

S. Tian, Q. Liu, and L. Gnatovskiy, Heart regeneration with embryonic cardiac progenitor cells and cardiac tissue engineering, J Stem Cell Transplant Biol, vol.1, issue.1, p.104, 2015.

L. T. Chong and J. , Cardiac progenitor cells for heart repair, Cell Death Discov, vol.2, p.16052, 2016.

K. Malliaras, R. R. Makkar, and R. R. Smith, Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction), J Am Coll Cardiol, vol.63, issue.2, pp.110-122, 2014.

E. Messina, L. De-angelis, and G. Frati, Isolation and expansion of adult cardiac stem cells from human and murine heart, Circ Res, vol.95, issue.9, pp.911-921, 2004.

A. Ibrahim, K. Cheng, and E. Marba´n, Exosomes as critical agents of cardiac regeneration triggered by cell therapy, Stem Cell Rep, vol.2, issue.5, pp.606-619, 2014.

L. Barile, V. Lionetti, and E. Cervio, Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction, Cardiovasc Res, vol.103, issue.4, pp.530-541, 2014.

H. Kanazawa, E. Tseliou, and K. Malliaras, Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction, Circ Heart Fail, vol.8, issue.2, pp.322-332, 2015.

T. Chakravarty, R. R. Makkar, and D. D. Ascheim, ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: rationale and design, Cell Transplant, vol.26, issue.2, pp.205-214, 2017.

K. Konstantinidis, R. S. Whelan, and R. N. Kitsis, Mechanisms of cell death in heart disease, Arterioscler Thromb Vasc Biol, vol.32, issue.7, pp.1552-1562, 2012.

V. Lambert, E. Gouadon, and A. Capderou, Right ventricular failure secondary to chronic overload in congenital heart diseases: benefits of cell therapy using human embryonic stem cell-derived cardiac progenitors, J Thorac Cardiovasc Surg, vol.149, issue.3, pp.708-715, 2015.

E. Raposio, F. Simonacci, and R. E. Perrotta, Adipose-derived stem cells: Comparison between two methods of isolation for clinical applications, Ann Med Surg (Lond), vol.20, pp.87-91, 2017.

J. Rehman, D. Traktuev, and J. Li, Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells, Circulation, vol.109, issue.10, pp.1292-1298, 2004.

Y. Cao, Z. Sun, and L. Liao, Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo, Biochem Biophys Res Commun, vol.332, issue.2, pp.370-379, 2005.

E. K. Kim, G. Li, and T. J. Lee, The effect of human adiposederived stem cells on healing of ischemic wounds in a diabetic nude mouse model, Plast Reconstr Surg, vol.128, issue.2, pp.387-394, 2011.

H. Nagata, M. Ii, and E. Kohbayashi, Cardiac adipose-derived stem cells exhibit high differentiation potential to cardiovascular cells in C57BL/6 mice, Stem Cells Transl Med, vol.5, issue.2, pp.141-151, 2016.

E. C. Perin, R. Sanz-ruiz, and P. L. Sa´nchez, Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial, Am Heart J, vol.168, issue.1, pp.88-95, 2014.

L. Luo, T. Lin, and S. Zheng, Adipose-derived stem cells attenuate pulmonary arterial hypertension and ameliorate pulmonary arterial remodeling in monocrotaline-induced pulmonary hypertensive rats, Clin Exp Hypertens, vol.37, issue.3, pp.241-248, 2015.

N. K. Somanna, P. M. Wo¨rner, and S. N. Murthy, Intratracheal administration of cyclooxygenase-1-transduced adipose tissuederived stem cells ameliorates monocrotaline-induced pulmonary hypertension in rats, Am J Physiol Heart Circ Physiol, vol.307, issue.8, pp.1187-1195, 2014.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, issue.4, pp.663-676, 2006.

S. Tohyama and K. Fukuda, Safe and effective cardiac regenerative therapy with human-induced pluripotent stem cells: how should we prepare pure cardiac myocytes?, Circ Res, vol.120, issue.10, pp.1558-1560, 2017.

L. Ye, Y. Chang, and Q. Xiong, Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells, Cell Stem Cell, vol.15, issue.6, pp.750-761, 2014.

W. Huang, M. Ke, and C. Cheng, Therapeutic benefits of induced pluripotent stem cells in monocrotaline-induced pulmonary arterial hypertension, PLoS One, vol.11, issue.2, p.142476, 2016.

J. W. Riggs, B. L. Barrilleaux, and N. Varlakhanova, Induced pluripotency and oncogenic transformation are related processes, Stem Cells Dev, vol.22, issue.1, pp.37-50, 2013.

H. Yamakawa and M. Ieda, Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming, Int Heart J, vol.56, issue.1, pp.1-5, 2015.

L. Barad, R. Schick, and N. Zeevi-levin, Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair, Can J Cardiol, vol.30, issue.11, pp.1279-1287, 2014.

C. J. Hunt, Cryopreservation of human stem cells for clinical application: a review, Transfus Med Hemother, vol.38, issue.2, pp.107-123, 2011.

Z. Junhui, W. Xingxiang, and F. Guosheng, Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension, Respir Med, vol.102, issue.7, pp.1073-1079, 2008.

H. Chen, P. Strappe, and S. Chen, Endothelial progenitor cells and pulmonary arterial hypertension, Heart Lung Circ, 2014.

S. Golpanian, I. H. Schulman, and R. F. Ebert, Concise review: review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease, Stem Cells Transl Med, vol.5, issue.2, pp.186-191, 2016.

D. Hou, E. Youssef, and T. J. Brinton, Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials, Circulation, vol.112, issue.9, pp.150-156, 2005.

B. Vrtovec, G. Poglajen, and L. Lezaic, Comparison of transendocardial and intracoronary CD34 þ cell transplantation in patients with nonischemic dilated cardiomyopathy, Circulation, vol.128, issue.11, pp.42-49, 2013.

. Menasche´p, Stem cell therapy for heart failure: are arrhythmias a real safety concern?, Circulation, vol.119, issue.20, pp.2735-2740, 2009.

S. Hinderer, E. Brauchle, and K. Schenke-layland, Generation and assessment of functional biomaterial scaffolds for applications in cardiovascular tissue engineering and regenerative medicine, Adv Healthc Mater, vol.4, issue.16, pp.2326-2341, 2015.

H. Parsa, K. Ronaldson, and G. Vunjak-novakovic, Bioengineering methods for myocardial regeneration, Adv Drug Deliv Rev, vol.96, pp.195-202, 2016.

A. Silvestri, M. Boffito, and S. Sartori, Biomimetic materials and scaffolds for myocardial tissue regeneration, Macromol Biosci, vol.13, issue.8, pp.984-1019, 2013.

S. Rupp, A. M. Zeiher, and S. Dimmeler, A regenerative strategy for heart failure in hypoplastic left heart syndrome: intracoronary administration of autologous bone marrow-derived progenitor cells, J Heart Lung Transplant, vol.29, issue.5, pp.574-577, 2010.

S. Rupp, C. Jux, and H. Bo¨nig, Intracoronary bone marrow cell application for terminal heart failure in children, Cardiol Young, vol.22, issue.5, pp.558-563, 2012.

E. Avolio, M. Caputo, and P. Madeddu, Stem cell therapy and tissue engineering for correction of congenital heart disease, Front Cell Dev Biol, vol.3, p.39, 2015.

H. M. Burkhart, M. Y. Qureshi, and S. C. Peral, Regenerative therapy for hypoplastic left heart syndrome: first report of intraoperative intramyocardial injection of autologous umbilical-cord blood-derived cells, J Thorac Cardiovasc Surg, vol.149, issue.3, pp.35-37, 2015.

X. Wang, F. Zhang, and Y. Shang, Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial, J Am Coll Cardiol, vol.49, issue.14, pp.1566-1571, 2007.

J. H. Zhu, X. X. Wang, and F. R. Zhang, Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: open-label pilot study, Pediatr Transplant, vol.12, issue.6, pp.650-655, 2008.

J. Granton, D. Langleben, and M. B. Kutryk, Endothelial NOsynthase gene-enhanced progenitor cell therapy for pulmonary arterial hypertension: The PHACeT Trial, Circ Res, vol.117, issue.7, pp.645-654, 2015.

S. Ishigami, S. Ohtsuki, and S. Tarui, Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial, Circ Res, vol.116, issue.4, pp.653-664, 2015.

M. Si and R. G. Ohye, Stem cell therapy for the systemic right ventricle, Expert Rev Cardiovasc Ther, vol.15, issue.11, pp.813-836, 2017.

A. R. Chugh, G. M. Beache, and J. H. Loughran, Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance, Circulation, vol.126, issue.11, pp.54-64, 2012.

A. B. Mathiasen, E. Jørgensen, and A. A. Qayyum, Rationale and design of the first randomized, double-blind, placebocontrolled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cells in chronic ischemic Heart Failure (MSC-HF Trial), Am Heart J, vol.164, issue.3, pp.285-291, 2012.

N. Dib, J. Dinsmore, and Z. Lababidi, One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study), JACC Cardiovasc Interv, vol.2, issue.1, pp.9-16, 2009.

B. Vrtovec, G. Poglajen, and M. Sever, Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy, J Card Fail, vol.17, issue.4, pp.272-281, 2011.

L. Lezaic, A. Socan, and G. Poglajen, Intracoronary transplantation of CD34(þ) cells is associated with improved myocardial perfusion in patients with nonischemic dilated cardiomyopathy, J Card Fail, vol.21, issue.2, pp.145-152, 2015.

G. Poglajen, M. Sever, and M. Cukjati, Effects of transendocardial CD34 þ cell transplantation in patients with ischemic cardiomyopathy, Circ Cardiovasc Interv, vol.7, issue.4, pp.552-559, 2014.

J. M. Aliotta, M. Pereira, and S. Wen, Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice, Cardiovasc Res, vol.110, issue.3, pp.319-330, 2016.

B. Doyle, P. Sorajja, and B. Hynes, Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFbeta1, Stem Cells Dev, 2008.

B. Hynes, A. Kumar, and J. O'sullivan, Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1, Eur Heart J, vol.34, issue.10, pp.782-789, 2013.