P. W. Sullivan, V. Ghushchyan, H. R. Wyatt, and J. O. Hill, The medical cost of cardiometabolic risk factor clusters in the United States, Obesity (Silver Spring), vol.15, pp.3150-3158, 2007.

J. Scholze, E. Alegria, C. Ferri, S. Langham, W. Stevens et al., Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model, BMC Public Health, vol.10, p.529, 2010.

A. D. Shah, C. Langenberg, E. Rapsomaniki, S. Denaxas, M. Pujades-rodriguez et al., Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1×9 million people, Lancet Diabetes Endocrinol, vol.3, pp.105-113, 2015.

A. Romero-corral, V. M. Montori, V. K. Somers, J. Korinek, R. J. Thomas et al., Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies, Lancet, vol.368, pp.666-678, 2006.

Y. Lu, K. Hajifathalian, M. Ezzati, M. Woodward, E. B. Rimm et al., Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects). (2014) Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1×8 million participants, Lancet, vol.383, pp.970-983

S. M. Haffner, Relationship of metabolic risk factors and development of cardiovascular disease and diabetes, Obesity (Silver Spring), vol.14, issue.3, pp.121-127, 2006.

F. Guo, D. R. Moellering, and W. T. Garvey, The progression of cardiometabolic disease: validation of a new cardiometabolic disease staging system applicable to obesity, Obesity (Silver Spring), vol.22, pp.110-118, 2014.

S. M. Grundy, Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds, J. Am. Coll. Cardiol, vol.47, pp.1093-1100, 2006.

M. H. Drazner, The progression of hypertensive heart disease, Circulation, vol.123, pp.327-334, 2011.

L. F. Van-gaal, I. L. Mertens, D. Block, and C. E. , Mechanisms linking obesity with cardiovascular disease, Nature, vol.444, pp.875-880, 2006.

V. Guarner and M. E. Rubio-ruiz, Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease, Interdiscip. Top. Gerontol, vol.40, pp.99-106, 2015.

E. Golia, G. Limongelli, F. Natale, F. Fimiani, V. Maddaloni et al., Inflammation and cardiovascular disease: from pathogenesis to therapeutic target, Curr. Atheroscler. Rep, vol.16, p.435, 2014.

A. Y. Tiong and D. Brieger, Inflammation and coronary artery disease, Am. Heart J, vol.150, pp.11-18, 2005.

J. Wu, S. Xia, B. Kalionis, W. Wan, and T. Sun, The role of oxidative stress and inflammation in cardiovascular aging, BioMed Res. Int, p.615312, 2014.

F. Tilloy, E. Treiner, S. Park, C. Garcia, F. Lemonnier et al., An invariant T cell receptor a chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted a/b T cell subpopulation in mammals, J. Exp. Med, vol.189, pp.1907-1921, 1999.

A. Kurioka, L. J. Walker, P. Klenerman, and C. B. Willberg, MAIT cells: new guardians of the liver, Clin. Transl. Immunology, vol.5, p.98, 2016.

E. Treiner, L. Duban, S. Bahram, M. Radosavljevic, V. Wanner et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1, Nature, vol.422, p.1018, 2003.

L. Kjer-nielsen, O. Patel, A. J. Corbett, J. Le-nours, B. Meehan et al., MR1 presents microbial vitamin B metabolites to MAIT cells, Nature, vol.491, pp.717-723, 2012.

A. J. Corbett, S. B. Eckle, R. W. Birkinshaw, L. Liu, O. Patel et al., Tcell activation by transitory neo-antigens derived from distinct microbial pathways, Nature, vol.509, pp.361-365, 2014.

K. Franciszkiewicz, M. Salou, F. Legoux, Q. Zhou, Y. Cui et al., MHC class I-related molecule, MR1, and mucosal-associated invariant T cells, Immunol. Rev, vol.272, pp.120-138, 2016.

L. Bourhis, L. Martin, E. Péguillet, I. Guihot, A. Froux et al., Antimicrobial activity of mucosal-associated invariant T cells, Nat Immunol, vol.11, pp.701-708, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550333

, Nat. Immunol, vol.11, pp.701-708

O. J. Lee, Y. N. Cho, S. J. Kee, M. J. Kim, H. M. Jin et al., Circulating mucosal-associated invariant T cell levels and their cytokine levels in healthy adults, Exp. Gerontol, vol.49, pp.47-54, 2014.

J. Novak, J. Dobrovolny, L. Novakova, and T. Kozak, The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age, Scand. J. Immunol, vol.80, pp.271-275, 2014.

E. Hiejima, T. Kawai, H. Nakase, T. Tsuruyama, T. Morimoto et al., Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease, Inflamm. Bowel Dis, vol.21, pp.1529-1540, 2015.

L. J. Walker, H. Tharmalingam, and P. Klenerman, The rise and fall of MAIT cells with age, Scand. J. Immunol, vol.80, pp.462-463, 2014.

I. Magalhaes, K. Pingris, C. Poitou, S. Bessoles, N. Venteclef et al., Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients, J. Clin. Invest, vol.125, pp.1752-1762, 2015.

E. Carolan, L. M. Tobin, B. A. Mangan, M. Corrigan, G. Gaoatswe et al., Altered distribution and increased IL-17 production by mucosalassociated invariant T cells in adult and childhood obesity, J. Immunol, vol.194, pp.5775-5780, 2015.

T. S. Hinks, Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease, Immunology, vol.148, pp.1-12, 2016.

E. B. Wong, T. Ndung'u, and V. O. Kasprowicz, The role of mucosal-associated invariant T cells in infectious diseases, Immunology, vol.150, pp.45-54, 2017.

A. Taube, R. Schlich, H. Sell, K. Eckardt, and J. Eckel, Inflammation and metabolic dysfunction: links to cardiovascular diseases, Am. J. Physiol. Heart Circ. Physiol, vol.302, pp.2148-2165, 2012.

, Standards of medical care in diabetes-2014, Diabetes Care, vol.37, pp.14-80, 2014.

G. Blom, Statistical Estimates and Transformed Beta-Variables, 1958.

W. J. Paulus, C. Tschöpe, J. E. Sanderson, C. Rusconi, F. A. Flachskampf et al., How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology, Eur. Heart J, vol.28, pp.2539-2550, 2007.

S. W. Waldo, J. Beede, S. Isakson, S. Villard-saussine, J. Fareh et al., Pro-B-type natriuretic peptide levels in acute decompensated heart failure, J. Am. Coll. Cardiol, vol.51, pp.1874-1882, 2008.

A. Maisel, C. Mueller, K. Adams, . Jr, S. D. Anker et al., State of the art: using natriuretic peptide levels in clinical practice, Eur. J. Heart Fail, vol.10, pp.824-839, 2008.

G. C. Fonarow, W. F. Peacock, C. O. Phillips, M. M. Givertz, and M. Lopatin, Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure, J. Am. Coll. Cardiol, vol.49, pp.1943-1950, 2007.

S. Gérart, S. Sibéril, E. Martin, C. Lenoir, C. Aguilar et al., Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP, Blood, vol.121, pp.614-623, 2013.

J. E. Ussher, M. Bilton, E. Attwod, J. Shadwell, R. Richardson et al., CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner, Eur. J. Immunol, vol.44, pp.195-203, 2014.

C. Cosgrove, J. E. Ussher, A. Rauch, K. Gärtner, A. Kurioka et al., Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection, Blood, vol.121, pp.951-961, 2013.

R. Cancello, J. Tordjman, C. Poitou, G. Guilhem, J. L. Bouillot et al., Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity, Diabetes, vol.55, pp.1554-1561, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01616631

E. Dalmas, N. Venteclef, C. Caer, C. Poitou, I. Cremer et al., T cell-derived IL-22 amplifies IL-1b-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes, Diabetes, vol.63, pp.1966-1977, 2014.

C. Caër, C. Rouault, T. Le-roy, C. Poitou, J. Aron-wisnewsky et al., Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue, Sci. Rep, vol.7, p.3000, 2017.

P. K. Sharma, E. B. Wong, R. J. Napier, W. R. Bishai, T. Ndung'u et al., High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells, Immunology, vol.145, pp.443-453, 2015.

P. Proost, E. Schutyser, P. Menten, S. Struyf, A. Wuyts et al., Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties, Blood, vol.98, pp.3554-3561, 2001.

S. Møller and M. Bernardi, Interactions of the heart and the liver, Eur. Heart J, vol.34, pp.2804-2811, 2013.

Y. M. Fouad, Y. , and R. , Hepato-cardiac disorders, World J. Hepatol, vol.6, pp.41-54, 2014.

L. Chatelier, E. Nielsen, T. Qin, J. Prifti, E. Hildebrand et al., Richness of human gut microbiome correlates with metabolic markers, Nature, vol.500, pp.541-546, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190602

A. Cotillard, S. P. Kennedy, L. C. Kong, E. Prifti, N. Pons et al., Dietary intervention impact on gut microbial gene richness, ANR MicroObes Consortium, vol.500, pp.585-588, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001543