M. J. Balunas and A. D. Kinghorn, Drug discovery from medicinal plants, Life Sci, vol.78, pp.431-441, 2005.

R. Xu, G. C. Fazio, and S. P. Matsuda, On the origins of triterpenoid skeletal diversity, Phytochemistry, vol.65, pp.261-291, 2004.

T. Takeda, T. Kondo, H. Mizukami, and Y. Ogihara, Bryonolic acid production in hairy roots of Trichosanthes kirilowii Max. var Japonica Kitam. Transformed with Agrobacterium rhizogenes and its cytotoxic activity, Chem. Pharm. Bull, vol.42, pp.730-732, 1994.

Y. S. Chang, M. S. Lin, R. L. Jiang, S. C. Huang, and L. K. Ho, 20-Epibryonolic acid, phytosterols and ellagic acid from Coriaria intermedia, Phytochemistry, vol.42, pp.559-560, 1996.

F. Khallouki, W. E. Hull, and R. W. Owen, Characterization of a rare triterpenoid and minor phenolic compounds in the root bark of Anisophyllea dichostyla R, Br. Food Chem. Toxicol, vol.47, 2007.

B. M. Dietz, A. Hajirahimkhan, T. L. Dunlap, and J. L. Bolton, Botanicals and Their Bioactive Phytochemicals for Women's Health, Pharmacol. Rev, vol.68, pp.1026-1073, 2016.

A. Bishayee, S. Ahmed, N. Brankov, and M. Perloff, Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer, Front. Biosci, vol.16, pp.980-996, 2011.

S. Kongtun, W. Jiratchariyakul, T. Kummalue, P. Tan-ariya, S. Kunnachak et al., Cytotoxic properties of root extract and fruit juice of Trichosanthes cucumerina, Planta Med, vol.75, pp.839-842, 2009.

T. N. Gatbonton-schwager, J. J. Letterio, and G. P. Tochtrop, Bryonolic acid transcriptional control of anti-inflammatory and antioxidant genes in macrophages in vitro and in vivo, J. Nat. Prod, vol.75, pp.591-598, 2012.

J. Que, M. Ye, Y. Zhang, W. Xu, H. Li et al., Bryonolic acid, a triterpenoid, protect against N-methyl-D-aspartate-induced neurotoxicity in PC12 Cells, Molecules, vol.21, 2016.

M. Doria, L. Maugest, T. Moreau, G. Lizard, and A. Vejux, Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson's disease. Free Radic, Biol. Med, vol.101, pp.393-400, 2016.

J. Zhang and Q. Liu, Cholesterol metabolism and homeostasis in the brain, Protein Cell, vol.6, pp.254-264, 2015.

W. Yang, Y. Bai, Y. Xiong, J. Zhang, S. Chen et al., Potentiating the antitumour response of CD8 + T cells by modulating cholesterol metabolism, Nature, vol.531, pp.651-655, 2016.

M. B. Fessler, The intracellular cholesterol landscape: Dynamic integrator of the immune response, Trends Immunol, vol.37, pp.819-830, 2016.

J. Leignadier, F. Dalenc, M. Poirot, and S. Silvente-poirot, Improving the efficacy of hormone therapy in breast cancer: The role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death, Biochem. Pharmacol, vol.144, pp.18-28, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02380608

A. Kloudova, F. P. Guengerich, and P. Soucek, The role of oxysterols in human cancer, Trends Endocrinol. Metab, vol.28, pp.485-496, 2017.

S. Silvente-poirot, M. Poirot, and . Cancer, Cholesterol and cancer, in the balance, Science, vol.343, pp.1445-1446, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00968924

S. Silvente-poirot and M. Poirot, Cholesterol metabolism and cancer: The good, the bad and the ugly, Curr. Opin. Pharmacol, vol.12, pp.673-676, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00822284

A. E. Morgan, K. M. Mooney, S. J. Wilkinson, N. A. Pickles, and M. T. Mc-auley, Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation, Ageing Res. Rev, vol.27, pp.108-124, 2016.

A. Zarrouk, A. Vejux, J. Mackrill, Y. O'callaghan, M. Hammami et al., Involvement of oxysterols in age-related diseases and ageing processes, Ageing Res. Rev, vol.18, pp.148-162, 2014.

G. Segala, M. David, P. De-medina, M. Poirot, N. Serhan et al., Dendrogenin A drives LXR to trigger lethal autophagy in cancers, Nat. Commun, vol.8, 1903.
URL : https://hal.archives-ouvertes.fr/inserm-02380591

F. Dalenc, M. Poirot, and S. Silvente-poirot, Dendrogenin A: A mammalian metabolite of cholesterol with tumor suppressor and neurostimulating properties, Curr. Med. Chem, vol.22, pp.3533-3549, 2015.

P. De-medina, M. R. Paillasse, G. Segala, M. Voisin, L. Mhamdi et al., Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties, Nat. Commun, 1840.
URL : https://hal.archives-ouvertes.fr/inserm-00823974

P. De-medina, M. R. Paillasse, B. Payre, S. Silvente-poirot, and M. Poirot, Synthesis of new alkylaminooxysterols with potent cell differentiating activities: Identification of leads for the treatment of cancer and neurodegenerative diseases, J. Med. Chem, vol.52, pp.7765-7777, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00519151

P. De-medina, S. Genovese, M. R. Paillasse, M. Mazaheri, S. Caze-subra et al., Auraptene is an inhibitor of cholesterol esterification and a modulator of estrogen receptors, Mol. Pharmacol, vol.78, pp.827-836, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00519166

F. Khallouki, P. De-medina, S. Caze-subra, K. Bystricky, P. Balaguer et al., Silvente-Poirot, S. Molecular and biochemical analysis of the estrogenic and proliferative properties of Vitamin E compounds, Front. Oncol, vol.5, 2015.

S. Bandyopadhyay, J. Li, E. Traer, J. W. Tyner, A. Zhou et al., Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia, PLoS ONE, vol.12, 2017.

D. Gonzalo-calvo, D. Lopez-vilaro, L. Nasarre, L. Perez-olabarria, M. Vazquez et al., Intratumor cholesteryl ester accumulation is associated with human breast cancer proliferation and aggressive potential: A molecular and clinicopathological study, BMC Cancer, vol.15, 2015.

S. Yue, J. Li, S. Y. Lee, H. J. Lee, T. Shao et al., Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness, Cell Metab, vol.19, pp.393-406, 2014.

M. R. Paillasse, P. De-medina, G. Amouroux, L. Mhamdi, M. Poirot et al., Signaling through cholesterol esterification: A new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion, J. Lipid Res, vol.50, pp.2203-2211, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00519146

P. De-medina, B. L. Payre, J. Bernad, I. Bosser, B. Pipy et al., Tamoxifen is a potent inhibitor of cholesterol esterification and prevents the formation of foam cells, J. Pharmacol. Exp. Ther, vol.308, pp.1165-1173, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00090774

C. Gales, D. Sanchez, M. Poirot, S. Pyronnet, L. Buscail et al., High tumorigenic potential of a constitutively active mutant of the cholecystokinin 2 receptor, Oncogene, vol.22, pp.6081-6089, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00090775

P. De-medina, M. R. Paillasse, G. Segala, and M. Poirot, Silvente-Poirot, S. Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands, Proc. Natl. Acad. Sci, vol.107, pp.13520-13525, 2010.

G. Segala, P. De-medina, L. Iuliano, C. Zerbinati, M. R. Paillasse et al., 6-Epoxy-cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells, Biochem. Pharmacol, vol.5, pp.175-189, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00822322

J. Li, D. Gu, S. S. Lee, B. Song, S. Bandyopadhyay et al., Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer, Oncogene, vol.35, pp.6378-6388, 2016.

F. Geng, X. Cheng, X. Wu, J. Y. Yoo, C. Cheng et al., Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediatedlipogenesis, Clin. Cancer Res, vol.22, pp.5337-5348, 2016.

S. Uda, S. Accossu, S. Spolitu, M. Collu, F. Angius et al., A lipoprotein source of cholesteryl esters is essential for proliferation of CEM-CCRF lymphoblastic cell line, Tumor Biol, vol.33, pp.443-453, 2012.

Y. Lin, M. A. Vermeer, and E. A. Trautwein, Triterpenic acids present in Hawthorn lower plasma cholesterol by inhibiting intestinal ACAT activity in hamsters, Evid. Based Complement. Altern. Med, 2011.

W. S. Lee, K. R. Im, Y. D. Park, N. D. Sung, and T. S. Jeong, Human ACAT-1 and ACAT-2 inhibitory activities of pentacyclic triterpenes from the leaves of Lycopus lucidus TURCZ, Biol. Pharm. Bull, vol.29, pp.382-384, 2006.

I. Tabas, L. L. Chen, J. W. Clader, A. T. Mcphail, D. A. Burnett et al., Rabbit and human liver contain a novel pentacyclic triterpene ester with acyl-CoA: Cholesterol acyltransferase inhibitory activity, J. Biol. Chem, vol.265, pp.8042-8051, 1990.

V. C. Jordan, Chemoprevention of breast cancer with selective oestrogen-receptor modulators, Nat. Rev. Cancer, vol.7, pp.46-53, 2007.

S. Silvente-poirot and M. Poirot, Cholesterol epoxide hydrolase and cancer, Curr. Opin. Pharmacol, vol.12, pp.696-703, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00743463

B. Kedjouar, P. De-medina, M. Oulad-abdelghani, B. Payre, S. Silvente-poirot et al., Molecular characterization of the microsomal tamoxifen binding site, J. Biol. Chem, vol.279, pp.34048-34061, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00090773

A. Alqahtani, K. Hamid, A. Kam, K. H. Wong, Z. Abdelhak et al., The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications, Curr. Med. Chem, vol.20, pp.908-931, 2013.

M. Huang, J. J. Lu, M. Q. Huang, J. L. Bao, X. P. Chen et al., Terpenoids: Natural products for cancer therapy, Expert Opin. Investig. Drugs, vol.21, pp.1801-1818, 2012.