E. Van-schaftingen, M. Detheux, and M. Veiga-da-cunha, Short-term control of glucokinase activity: Role of a regulatory protein, FASEB J, vol.8, pp.414-419, 1994.

L. Agius, Hormonal and Metabolite Regulation of Hepatic Glucokinase, Annu. Rev. Nutr, vol.36, pp.389-415, 2016.

S. Baltrusch, S. Lenzen, D. A. Okar, A. J. Lange, and M. Tiedge, Characterization of glucokinase-binding protein epitopes by a phage-displayed peptide library identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel interaction partner, J. Biol. Chem, vol.276, pp.43915-43923, 2001.

B. S. Hijmans, A. Boss, T. H. Van-dijk, M. Soty, H. Wolters et al., Hepatocytes contribute to residual glucose production in a mouse model for glycogen storage disease type Ia, Hepatology, vol.66, pp.2042-2054, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02339628

F. Rajas, P. Labrune, and G. Mithieux, Glycogen storage disease type 1 and diabetes: Learning by comparing and contrasting the two disorders, Diabetes Metab, vol.39, pp.377-387, 2013.

M. M. Adeva-andany, M. González-lucán, C. Donapetry-garcía, and C. Fernández-fernández, Ameneiros-Rodríguez, E. Glycogen metabolism in humans, BBA Clin, vol.5, pp.85-100, 2016.

M. C. Petersen, D. F. Vatner, and G. I. Shulman, Regulation of hepatic glucose metabolism in health and disease, Nat. Rev. Endocrinol, vol.13, pp.572-587, 2017.

I. Magnusson, D. L. Rothman, B. Jucker, G. W. Cline, R. G. Shulman et al., Liver glycogen turnover in fed and fasted humans, Am. J. Physiol, vol.266, pp.796-803, 1994.

R. M. Mcdevitt, S. J. Bott, M. Harding, W. A. Coward, L. J. Bluck et al., De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women, Am. J. Clin. Nutr, vol.74, pp.737-746, 2001.

H. Ozen, Glycogen storage diseases: New perspectives, World J. Gastroenterol, vol.13, pp.2541-2553, 2007.

A. G. Linden, S. Li, H. Y. Choi, F. Fang, M. Fukasawa et al., Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice, J. Lipid Res, vol.59, pp.475-487, 2018.

K. Xu, K. T. Morgan, A. Todd-gehris, T. C. Elston, and S. M. Gomez, A Whole-Body Model for Glycogen Regulation Reveals a Critical Role for Substrate Cycling in Maintaining Blood Glucose Homeostasis, PLoS Comput. Biol, 2011.

E. Mutel, A. Gautier-stein, A. Abdul-wahed, M. Amigó-correig, C. Zitoun et al., Control of Blood Glucose in the Absence of Hepatic Glucose Production During Prolonged Fasting in Mice, Diabetes, vol.60, pp.3121-3131, 2011.

G. Mithieux, New data and concepts on glutamine and glucose metabolism in the gut, Curr. Opin. Clin. Nutr. Metab. Care, vol.4, pp.267-271, 2001.

G. Mithieux, F. Rajas, and A. Gautier-stein, A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis, J. Biol. Chem, vol.279, pp.44231-44234, 2004.

M. Soty, A. Gautier-stein, F. Rajas, and G. Mithieux, Gut-Brain Glucose Signaling in Energy Homeostasis, Cell Metab, vol.25, pp.1231-1242, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02339600

B. Pillot, M. Soty, A. Gautier-stein, C. Zitoun, and G. Mithieux, Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin, Endocrinology, vol.150, pp.616-624, 2009.

J. E. Gerich, C. Meyer, H. J. Woerle, and M. Stumvoll, Renal gluconeogenesis: Its importance in human glucose homeostasis, Diabetes Care, vol.24, pp.382-391, 2001.

M. Croset, F. Rajas, C. Zitoun, J. M. Hurot, S. Montano et al., Rat small intestine is an insulinsensitive gluconeogenic organ, Diabetes, vol.50, pp.740-746, 2001.

G. Mithieux, A. Gautier-stein, F. Rajas, and C. Zitoun, Contribution of intestine and kidney to glucose fluxes in different nutritional states in rat, Comp. Biochem. Physiol. B Biochem. Mol. Biol, vol.143, pp.195-200, 2006.

E. Mutel, A. Abdul-wahed, N. Ramamonjisoa, A. Stefanutti, I. Houberdon et al., Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas, J. Hepatol, vol.54, pp.529-537, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00575314

A. Penhoat, L. Fayard, A. Stefanutti, G. Mithieux, and F. Rajas, Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice, Metab. Clin. Exp, vol.63, pp.104-111, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859366

P. C. Heinrich, H. P. Morris, and G. Weber, Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver, Cancer Res, vol.36, pp.3189-3197, 1976.

R. Hanczko, D. R. Fernandez, E. Doherty, Y. Qian, G. Vas et al., Prevention of hepatocarcinogenesis and increased susceptibility to acetaminopheninduced liver failure in transaldolase-deficient mice by N-acetylcysteine, J. Clin. Investig, vol.119, pp.1546-1557, 2009.

W. H. Koppenol, P. L. Bounds, C. V. Dang, and . Otto, Warburg's contributions to current concepts of cancer metabolism, Nat. Rev. Cancer, vol.11, pp.325-337, 2011.

F. Benhamed, G. Filhoulaud, S. Caron, P. Lefebvre, B. Staels et al., Links ChREBP and FXR to Glucose-Sensing. Front. Endocrinol, vol.5, p.230, 2015.

F. Benhamed, P. D. Denechaud, M. Lemoine, C. Robichon, M. Moldes et al., The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans, J. Clin. Investig, vol.122, pp.2176-2194, 2012.

R. Dentin, L. Tomas-cobos, F. Foufelle, J. Leopold, J. Girard et al., Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver, J. Hepatol, vol.56, pp.199-209, 2012.

K. Iizuka, B. Miller, and K. Uyeda, Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice, Am. J. Physiol. Endocrinol. Metab, vol.291, pp.358-364, 2006.

H. Niwa, K. Iizuka, T. Kato, W. Wu, H. Tsuchida et al., ChREBP Rather Than SHP Regulates Hepatic VLDL Secretion, Nutrients, vol.10, p.321, 2018.

N. Poungvarin, B. Chang, M. Imamura, J. Chen, K. Moolsuwan et al., Genome-Wide Analysis of ChREBP Binding Sites on Male Mouse Liver and White Adipose Chromatin, Endocrinology, vol.156, pp.1982-1994, 2015.

R. Dentin, F. Benhamed, I. Hainault, V. Fauveau, F. Foufelle et al., Liverspecific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice, Diabetes, vol.55, pp.2159-2170, 2006.

T. Jois, W. Chen, V. Howard, R. Harvey, K. Youngs et al., Deletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice, Mol. Metab, vol.6, pp.1381-1394, 2017.

D. F. Calvisi, C. Wang, C. Ho, S. Ladu, S. A. Lee et al., Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma, Gastroenterology, vol.140, pp.1071-1083, 2011.

S. Ribback, J. Sonke, A. Lohr, J. Frohme, K. Peters et al., Hepatocellular glycogenotic foci after combined intraportal pancreatic islet transplantation and knockout of the carbohydrate responsive element binding protein in diabetic mice, Oncotarget, vol.8, pp.104315-104329, 2017.

S. Ribback, L. Che, M. G. Pilo, A. Cigliano, G. Latte et al., Oncogene-dependent addiction to carbohydrate-responsive element binding protein in hepatocellular carcinoma, Cell Cycle, vol.17, pp.1496-1512, 2018.

X. Tong, F. Zhao, A. Mancuso, J. J. Gruber, and C. B. Thompson, The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation, Proc. Natl. Acad. Sci, vol.106, pp.21660-21665, 2009.

A. Abdul-wahed, A. Gautier-stein, S. Casteras, M. Soty, D. Roussel et al., A link between hepatic glucose production and peripheral energy metabolism via hepatokines, Mol. Metab, vol.3, pp.531-543, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01350728

M. Gjorgjieva, J. Calderaro, L. Monteillet, M. Silva, M. Raffin et al., Dietary exacerbation of metabolic stress leads to accelerated hepatic carcinogenesis in glycogen storage disease type Ia, J. Hepatol, vol.69, pp.1074-1087, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02339527

L. Eissing, T. Scherer, K. Tödter, U. Knippschild, J. W. Greve et al., De novo lipogenesis in human fat and liver is linked to ChREBP? and metabolic health, Nat. Commun, 1528.

G. Filhoulaud, S. Guilmeau, R. Dentin, J. Girard, and C. Postic, Novel insights into ChREBP regulation and function, Trends Endocrinol. Metab, vol.24, pp.257-268, 2013.

T. Kabashima, T. Kawaguchi, B. E. Wadzinski, and K. Uyeda, Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver, Proc. Natl. Acad. Sci, vol.100, pp.5107-5112, 2003.

L. G. Mcferrin and W. R. Atchley, A novel N-terminal domain may dictate the glucose response of Mondo proteins, PLoS ONE, vol.7, p.34803, 2012.

J. Bricambert, J. Miranda, F. Benhamed, J. Girard, C. Postic et al., Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice, J. Clin. Investig, vol.120, pp.4316-4331, 2010.

C. Guinez, G. Filhoulaud, F. Rayah-benhamed, S. Marmier, C. Dubuquoy et al., O-GlcNAcylation Increases ChREBP Protein Content and Transcriptional Activity in the Liver, Diabetes, vol.60, pp.1399-1413, 2011.

M. N. Davies, B. L. O'callaghan, and H. C. Towle, Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity, J. Biol. Chem, vol.283, pp.24029-24038, 2008.

S. Sato, H. Jung, T. Nakagawa, R. Pawlosky, T. Takeshima et al., Metabolite Regulation of Nuclear Localization of Carbohydrate-response Elementbinding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR, J. Biol. Chem, vol.291, pp.10515-10527, 2016.

P. Ortega-prieto and C. Postic, Carbohydrate Sensing Through the Transcription Factor ChREBP. Front. Genet, vol.10, p.472, 2019.

M. S. Kim, S. A. Krawczyk, L. Doridot, A. J. Fowler, J. X. Wang et al., ChREBP regulates fructose-induced glucose production independently of insulin signaling, J. Clin. Investig, vol.126, pp.4372-4386, 2016.

R. Unnikrishnan, R. Pradeepa, S. R. Joshi, and V. Mohan, Type 2 Diabetes: Demystifying the Global Epidemic, vol.66, pp.1432-1442, 2017.

L. Chen, D. J. Magliano, and P. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives, Nat. Rev. Endocrinol, vol.8, pp.228-236, 2012.

H. V. Lin and D. Accili, Hormonal regulation of hepatic glucose production in health and disease, Cell Metab, vol.14, pp.9-19, 2011.

M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature, vol.414, pp.813-820, 2001.

P. S. Kishnani, S. L. Austin, J. E. Abdenur, P. Arn, D. S. Bali et al., Diagnosis and management of glycogen storage disease type I: A practice guideline of the American College of Medical Genetics and Genomics, Genet. Med, p.1, 2014.

B. W. Smith and L. A. Adams, Non-alcoholic fatty liver disease, Crit. Rev. Clin. Lab. Sci, vol.48, pp.97-113, 2011.

J. M. Hazlehurst, C. Woods, T. Marjot, J. F. Cobbold, and J. W. Tomlinson, Non-alcoholic fatty liver disease and diabetes, Metab. Clin. Exp, vol.65, pp.1096-1108, 2016.

R. M. Williamson, J. F. Price, S. Glancy, E. Perry, L. D. Nee et al., Prevalence of and risk factors for hepatic steatosis and nonalcoholic Fatty liver disease in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study, Diabetes Care, vol.34, pp.1139-1144, 2011.

T. Matsuzaka and H. Shimano, Insulin-dependent and -independent regulation of sterol regulatory elementbinding protein-1c, J. Diabetes Investig, vol.4, pp.411-412, 2013.

A. Grefhorst, M. Schreurs, M. H. Oosterveer, V. A. Cortés, R. Havinga et al., Carbohydrate-response-element-binding protein (ChREBP) and not the liver X receptor ? (LXR?) mediates elevated hepatic lipogenic gene expression in a mouse model of glycogen storage disease type 1, Biochem. J, vol.432, pp.249-254, 2010.

C. Postic and J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically engineered mice, J. Clin. Investig, vol.118, pp.829-838, 2008.

R. H. Bandsma, B. H. Prinsen, M. De-sain-van-der-velden, J. P. Rake, T. Boer et al., Increased de novo Lipogenesis and Delayed Conversion of Large VLDL into Intermediate Density Lipoprotein Particles Contribute to Hyperlipidemia in Glycogen Storage Disease Type 1a, Pediatr. Res, vol.63, pp.702-707, 2008.

M. Gjorgjieva, M. H. Oosterveer, G. Mithieux, and F. Rajas, Mechanisms by Which Metabolic Reprogramming in GSD1 Liver Generates a Favorable Tumorigenic Environment, J. Inborn Errors Metab. Screen, vol.4, 2016.

C. Bertot, L. Adams, and L. A. , The Natural Course of Non-Alcoholic Fatty Liver Disease, Int. J. Mol. Sci, vol.17, p.774, 2016.

A. Sanyal, A. Poklepovic, E. Moyneur, and V. Barghout, Population-based risk factors and resource utilization for HCC: US perspective, Curr. Med. Res. Opin, vol.26, pp.2183-2191, 2010.

B. Bengtsson, P. Stål, S. Wahlin, N. K. Björkström, and H. Hagström, Characteristics and outcome of hepatocellular carcinoma in patients with NAFLD without cirrhosis, Liver Int, vol.39, pp.1098-1108, 2019.

L. Monteillet, M. Gjorgjieva, M. Silva, V. Verzieux, L. Imikirene et al., Intracellular lipids are an independent cause of liver injury and chronic kidney disease in non alcoholic fatty liver disease-like context, Mol. Metab, vol.16, pp.100-115, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02339561

G. Musso, M. Cassader, and R. Gambino, Non-alcoholic steatohepatitis: Emerging molecular targets and therapeutic strategies, Nat. Rev. Drug Discov, vol.15, pp.249-274, 2016.

L. R. Waskowicz, J. Zhou, D. J. Landau, E. D. Brooks, A. Lim et al., Bezafibrate induces autophagy and improves hepatic lipid metabolism in glycogen storage disease type Ia, Hum. Mol. Genet, vol.28, pp.143-154, 2018.

B. Finan, C. Clemmensen, Z. Zhu, K. Stemmer, K. Gauthier et al., Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease, Cell, vol.167, pp.843-857, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01607311

R. J. Perry, D. Zhang, X. M. Zhang, J. L. Boyer, and G. I. Shulman, Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats, Science, vol.347, pp.1253-1256, 2015.

R. J. Perry, T. Kim, X. M. Zhang, H. Y. Lee, D. Pesta et al., Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a livertargeted mitochondrial uncoupler, Cell Metab, vol.18, pp.740-748, 2013.