N. Aguirre, F. Beal, M. Matson, W. R. Bogdanov, and M. B. , Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis, Free Radical Research, vol.39, pp.383-388, 2005.

. Von-grabowiecki, , vol.5, 2016.

M. Antoine, C. Gaiddon, and J. P. Loeffler, Ca2+/calmodulin kinase types II and IV regulate c-fos transcription in the AtT20 corticotroph cell line, Molecular and Cellular Endocrinology, vol.120, pp.3806-3809, 1996.

C. H. Arrowsmith, Structure and function in the p53 family, Cell Death and Differentiation, vol.6, pp.1169-1173, 1999.

S. C. Barber and P. J. Shaw, Oxidative stress in ALS: key role in motor neuron injury and therapeutic target, Free Radical Biology and Medicine, vol.48, pp.629-641, 2010.

L. Belloni, F. Moretti, P. Merlo, A. Damalas, A. Costanzo et al., DNp73a protects myogenic cells from apoptosis, Oncogene, vol.25, pp.3606-3612, 2006.

S. Benosman, I. Gross, N. Clarke, A. G. Jochemsen, K. Okamoto et al., Multiple neurotoxic stresses converge on MDMX proteolysis to cause neuronal apoptosis, Cell Death and Differentiation, vol.14, pp.2047-2057, 2007.

S. Benosman, X. Meng, V. Grabowiecki, Y. Palamiuc, L. Hritcu et al., Complex regulation of p73 isoforms after alteration of amyloid precursor polypeptide (aPP) function and DNA damage in neurons, Journal of Biological Chemistry, vol.286, pp.43013-43025, 2011.

C. Bernardini, F. Censi, W. Lattanzi, M. Barba, G. Calcagnini et al., Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients, PLoS One, vol.8, p.57739, 2013.

S. Boillé-e, V. Velde, C. Cleveland, and D. W. , ALS: a disease of motor neurons and their nonneuronal neighbors, Neuron, vol.52, pp.39-59, 2006.

S. A. Broadley and F. U. Hartl, Mitochondrial stress signaling: a pathway unfolds, Trends in Cell Biology, vol.18, pp.1-4, 2008.

T. Bui, J. Sequeira, T. C. Wen, A. Sola, Y. Higashi et al., ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia, PLoS One, vol.4, p.4373, 2009.

H. Cam, H. Griesmann, M. Beitzinger, L. Hofmann, R. Beinoraviciute-kellner et al., P53 family members in myogenic differentiation and rhabdomyosarcoma development, Cancer Cell, vol.10, pp.281-293, 2006.

D. Capitanio, M. Vasso, A. Ratti, G. Grignaschi, M. Volta et al., Molecular signatures of amyotrophic lateral sclerosis disease progression in hind and forelimb muscles of an SOD1(G93A) mouse model, Antioxidants & Redox Signaling, vol.17, pp.1333-1350, 2012.

I. Casciano, M. Ponzoni, C. L. Cunsolo, G. P. Tonini, and M. Romani, Different p73 splicing variants are expressed in distinct tumour areas of a multifocal neuroblastoma, Cell Death and Differentiation, vol.6, pp.391-393, 1999.

S. Chen, P. Sayana, X. Zhang, and W. Le, Genetics of amyotrophic lateral sclerosis: an update, Molecular Neurodegeneration, vol.8, p.28, 2013.

S. M. De-la-monte, Y. K. Sohn, and J. R. Wands, Correlates of p53-and fas (cD95)-mediated apoptosis in alzheimer's disease, Journal of the Neurological Sciences, vol.152, pp.73-83, 1997.

V. De-laurenzi, A. Costanzo, D. Barcaroli, A. Terrinoni, M. Falco et al., Two new p73 splice variants, and , with different transcriptional activity, Journal of Experimental Medicine, vol.188, pp.1763-1768, 1998.

L. A. Donehower, M. Harvey, B. L. Slagle, M. J. Mcarthur, C. A. Montgomery et al., Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours, Nature, vol.356, pp.215-221, 1992.

D. Emig, N. Salomonis, J. Baumbach, T. Lengauer, B. R. Conklin et al., AltAnalyze and DomainGraph: analyzing and visualizing exon expression data, Nucleic Acids Research, vol.38, pp.755-762, 2010.

G. Fontemaggi, A. Gurtner, S. Strano, Y. Higashi, A. Sacchi et al., The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation, Molecular and Cellular Biology, vol.21, pp.8461-8470, 2001.

C. Gaiddon, M. De-tapia, and J. Loeffler, The tissue-specific transcription factor pit-1/GHF-1 binds to the c-fos serum response element and activates c-fos transcription, Molecular Endocrinology, vol.13, pp.742-751, 1999.

S. Gonfloni, V. Iannizzotto, E. Maiani, G. Bellusci, S. Ciccone et al., P53 and Sirt1: routes of metabolism and genome stability, Biochemical Pharmacology, vol.92, pp.149-156, 2014.

J. Gonzalez-de-aguilar, C. Niederhauser-wiederkehr, B. Halter, D. Tapia, M. et al., Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model, Physiological Genomics, vol.32, pp.207-218, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00518523

J. Gonzá-lez-de-aguilar, J. W. Gordon, F. René, M. De-tapia, B. Lutz-bucher et al., Alteration of the bcl-x/Bax ratio in a transgenic mouse model of amyotrophic lateral sclerosis: evidence for the implication of the p53 signaling pathway, Neurobiology of Disease, vol.7, pp.406-415, 2000.

P. J. Hart, Pathogenic superoxide dismutase structure, folding, aggregation and turnover, Current Opinion in Chemical Biology, vol.10, pp.131-138, 2006.

Y. H. Jiang, D. Armstrong, U. Albrecht, C. M. Atkins, J. L. Noebels et al., Mutation of the angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation, Neuron, vol.21, pp.80596-80602, 1998.

. Von-grabowiecki, , vol.5, 2016.

C. Kuntz, Y. Kinoshita, M. F. Beal, L. A. Donehower, and R. S. Morrison, Absence of p53: no effect in a transgenic mouse model of familial amyotrophic lateral sclerosis, Experimental Neurology, vol.165, pp.184-190, 2000.

M. Lee, Effect of mitochondrial stress on systemic metabolism, Annals of the New York Academy of Sciences, vol.1350, pp.61-65, 2015.

G. Manfredi and Z. Xu, Mitochondrial dysfunction and its role in motor neuron degeneration in ALS, Mitochondrion, vol.5, pp.77-87, 2005.

V. Marcel, M. Dichtel-danjoy, C. Sagne, H. Hafsi, D. Ma et al., Biological functions of p53 isoforms through evolution: lessons from animal and cellular models, Cell Death and Differentiation, vol.18, pp.1815-1824, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00814713

S. E. Martin, C. J. Temm, M. P. Goheen, T. M. Ulbright, and E. M. Hattab, Cytoplasmic p63 immunohistochemistry is a useful marker for muscle differentiation: an immunohistochemical and immunoelectron microscopic study, Modern Pathology, vol.24, pp.1320-1326, 2011.

G. Mazzaro, G. Bossi, S. Coen, A. Sacchi, and S. Soddu, The role of wild-type p53 in the differentiation of primary hemopoietic and muscle cells, Oncogene, vol.18, pp.5831-5835, 1999.

D. Menendez, A. Inga, and M. A. Resnick, The expanding universe of p53 targets, Nature Reviews Cancer, vol.9, pp.724-737, 2009.

S. Michel, M. Canonne, T. Arnould, and R. P. , Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response, Mitochondrion, vol.21, pp.58-68, 2015.

F. Murray-zmijewski and D. P. Lane, P53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress, Cell Death and Differentiation, vol.13, pp.962-972, 2006.

A. J. Murton, D. Constantin, and P. L. Greenhaff, The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy, Biochimica Et Biophysica Acta, vol.1782, pp.730-743, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00501595

H. Nishitoh, H. Kadowaki, A. Nagai, T. Maruyama, T. Yokota et al., ALS-linked mutant SOD1 induces ER stress-and ASK1-dependent motor neuron death by targeting derlin-1, Genes & Development, vol.22, pp.1451-1464, 2008.

M. Osada, M. Ohba, C. Kawahara, C. Ishioka, R. Kanamaru et al., Cloning and functional analysis of human p51, which structurally and functionally resembles p53, Nature Medicine, vol.4, pp.839-843, 1998.

O. Pansarasa, D. Rossi, A. Berardinelli, and C. Cereda, Amyotrophic lateral sclerosis and skeletal muscle: an update, Molecular Neurobiology, vol.49, pp.984-990, 2014.

A. Porrello, M. A. Cerone, S. Coen, A. Gurtner, G. Fontemaggi et al., P53 regulates myogenesis by triggering the differentiation activity of pRb, The Journal of Cell Biology, vol.151, pp.1295-1304, 2000.

P. Pradat, O. Dubourg, M. De-tapia, F. Di-scala, L. Dupuis et al., Muscle gene expression is a marker of amyotrophic lateral sclerosis severity, Neurodegenerative Diseases, vol.9, pp.38-52, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00877467

J. Prudlo, J. Koenig, J. Grä-ser, E. Burckhardt, P. Mestres et al., Motor neuron cell death in a mouse model of FALS is not mediated by the p53 cell survival regulator, Brain Research, vol.879, pp.2745-2746, 2000.

U. J. Pyati, E. Gjini, S. Carbonneau, J. Lee, F. Guo et al., Kelsell DP, Look AT. 2011. P63 mediates an apoptotic response to pharmacological and disease-related ER stress in the developing epidermis, Developmental Cell, vol.21, pp.492-505

S. Ramadan, A. Terrinoni, M. V. Catani, A. E. Sayan, R. A. Knight et al., P73 induces apoptosis by different mechanisms, Biochemical and Biophysical Research Communications, vol.331, pp.713-717, 2005.

M. E. Ripps, G. W. Huntley, P. R. Hof, J. H. Morrison, and J. W. Gordon, Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.689-693, 1995.

R. Romano, B. Birkaya, and S. Sinha, Defining the regulatory elements in the proximal promoter of DNp63 in keratinocytes: potential roles for Sp1/Sp3, NF-y, and p63, Journal of Investigative Dermatology, vol.126, pp.1469-1479, 2006.

J. D. Rothstein, Current hypotheses for the underlying biology of amyotrophic lateral sclerosis, Annals of Neurology 65Suppl, vol.1, 2009.

M. Rouleau, A. Medawar, L. Hamon, S. Shivtiel, Z. Wolchinsky et al., TAp63 is important for cardiac differentiation of embryonic stem cells and heart development, STEM CELLS, vol.29, pp.1672-1683, 2011.

A. Rufini, P. Tucci, I. Celardo, and G. Melino, Senescence and aging: the critical roles of p53, Oncogene, vol.32, pp.5129-5143, 2013.

M. Schwarzkopf, D. Coletti, D. Sassoon, and G. Marazzi, Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway, Genes & Development, vol.20, pp.3440-3452, 2006.

R. Seidl, S. Fang-kircher, B. Bidmon, N. Cairns, and G. Lubec, Apoptosis-associated proteins p53 and APO-1/Fas (cD95) in brains of adult patients with down syndrome, Neuroscience Letters, vol.260, issue.98, pp.945-953, 1999.

D. Senft, R. Ze'ev, and A. , UPR, autophagy, and mitochondria crosstalk underlies the ER stress response, Trends in Biochemical Sciences, vol.40, pp.141-148, 2015.

S. Soddu, G. Blandino, R. Scardigli, S. Coen, A. Marchetti et al., Interference with p53 protein inhibits hematopoietic and muscle differentiation, The Journal of Cell Biology, vol.134, pp.193-204, 1996.

F. Sohm, C. Gaiddon, M. Antoine, A. Boutillier, and J. Loeffler, The retinoblastoma susceptibility gene product/Sp1 signalling pathway is modulated by Ca2+/calmodulin kinases II and IV activity, Oncogene, vol.18, pp.2762-2769, 1999.

E. S. Stavridi and T. D. Halazonetis, P53 and stress in the ER, Genes & Development, vol.18, pp.241-244, 2004.

X. Su, Y. J. Gi, D. Chakravarti, I. L. Chan, A. Zhang et al., TAp63 is a master transcriptional regulator of lipid and glucose metabolism, Cell Metabolism, vol.16, pp.511-525, 2012.

Y. Tamir and E. Bengal, P53 protein is activated during muscle differentiation and participates with MyoD in the transcription of muscle creatine kinase gene, Oncogene, vol.17, pp.347-356, 1998.

V. Vidimar, X. Meng, M. Klajner, C. Licona, L. Fetzer et al., Induction of caspase 8 and reactive oxygen species by ruthenium-derived anticancer compounds with improved water solubility and cytotoxicity, Biochemical Pharmacology, vol.84, pp.1428-1436, 2012.

Y. Von-grabowiecki, C. Licona, L. Palamiuc, P. Abreu, V. Vidimar et al., Regulation of a Notch3-Hes1 pathway and protective effect by a tocopherol-omega alkanol chain derivative in muscle atrophy, Journal of Pharmacology and Experimental Therapeutics, vol.352, pp.23-32, 2015.

S. Von-haehling, J. E. Morley, and S. D. Anker, An overview of sarcopenia: facts and numbers on prevalence and clinical impact, Journal of Cachexia, Sarcopenia and Muscle, vol.1, pp.129-133, 2010.

K. H. Vousden and K. M. Ryan, P53 and metabolism, Nature Reviews Cancer, vol.9, pp.691-700, 2009.

B. Vurusaner, G. Poli, and H. Basaga, Tumor suppressor genes and ROS: complex networks of interactions, Free Radical Biology and Medicine, vol.52, pp.7-18, 2012.

D. S. Waddell, L. M. Baehr, J. Van-den-brandt, S. A. Johnsen, H. M. Reichardt et al., The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene, AJP: Endocrinology and Metabolism, vol.295, pp.785-797, 2008.

H. Weintraub, S. Hauschka, and S. J. Tapscott, The MCK enhancer contains a p53 responsive element, Proceedings of the National Academy of Sciences of the United States of America, vol.88, pp.4570-4571, 1991.

J. D. White, C. Rachel, R. Vermeulen, M. Davies, and M. D. Grounds, The role of p53 in vivo during skeletal muscle post-natal development and regeneration: studies in p53 knockout mice, The International Journal of Developmental Biology, vol.46, pp.577-582, 2002.

M. Wong and L. J. Martin, Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice, Human Molecular Genetics, vol.19, pp.2284-2302, 2010.

K. Yamanaka, S. Boillee, E. A. Roberts, M. L. Garcia, M. Mcalonis-downes et al., Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.7594-7599, 2008.

N. Zanou and P. Gailly, Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (mRFs) and insulin-like growth factors (iGFs) pathways, Cellular and Molecular Life Sciences, vol.70, pp.4117-4130, 2013.

Y. Zhu and C. Prives, P53 and metabolism: the GAMT connection, Molecular Cell, vol.36, pp.351-352, 2009.