W. Chen, K. Sun, R. Zheng, H. Zeng, S. Zhang et al., Cancer incidence and mortality in China, Chin J Cancer Res, vol.30, pp.1-12, 2014.

R. L. Siegel, K. D. Miller, and A. Jemal, CA, Cancer statistics, vol.68, pp.7-30, 2018.

K. T. Allen, H. Chin-sinex, T. Deluca, J. R. Pomerening, J. Sherer et al., Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells, Free Radic Biol Med, vol.89, pp.263-73, 2015.

J. L. Benci, B. Xu, Y. Qiu, T. J. Wu, H. Dada et al., Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade, Cell, vol.167, pp.1540-54, 2016.

R. A. Morgan, J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot et al., Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2, Mol Ther: J Am Soc Gene Ther, vol.18, pp.843-51, 2010.

, Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated

K. D. Miller, R. L. Siegel, C. C. Lin, A. B. Mariotto, J. L. Kramer et al., Cancer treatment and survivorship statistics, Cancer J Clin, vol.66, pp.271-89, 2016.

W. A. Hammond, A. Swaika, and K. Mody, Pharmacologic resistance in colorectal cancer: a review, Therapeutic Adv Med Oncol, vol.8, pp.57-84, 2016.

J. Y. Douillard, D. Cunningham, A. D. Roth, M. Navarro, R. D. James et al., Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial, Lancet, vol.355, pp.1041-1048, 2000.

L. B. Saltz, J. V. Cox, C. Blanke, L. S. Rosen, L. Fehrenbacher et al., Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group, New Engl J Med, vol.343, pp.905-919, 2000.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-74, 2011.

G. Matthew, L. Vander-heiden, and B. T. Craig, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, vol.324, pp.1029-1062, 2009.

K. Adekola, S. T. Rosen, and M. Shanmugam, Glucose transporters in cancer metabolism, Curr Opin Oncol, vol.24, pp.650-654, 2012.

R. J. Shaw, Glucose metabolism and cancer, Curr Opin Cell Biol, vol.18, pp.598-608, 2006.

C. Van-dang and M. Pollak, Why cancer & metabolism? Why now?, Cancer Metab, vol.1, p.1, 2013.

Y. Zhao, E. B. Butler, and M. Tan, Targeting cellular metabolism to improve cancer therapeutics, Cell Death Dis, vol.4, p.532, 2013.

R. A. Cairns, I. S. Harris, and T. W. Mak, Regulation of cancer cell metabolism, Nat Rev Cancer, vol.11, pp.85-95, 2011.

R. H. Xu, H. Pelicano, Y. Zhou, J. S. Carew, L. Feng et al., Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia, Cancer Res, vol.65, pp.613-634, 2005.

W. Guo and Z. Wang, MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer, Hepatology, vol.62, pp.1132-1176, 2015.

Z. Qiu, W. Guo, Q. Wang, Z. Chen, S. Huang et al., MicroRNA-124 reduces the pentose phosphate pathway and proliferation by targeting PRPS1 and RPIA mRNAs in human colorectal cancer cells, Gastroenterology, vol.149, pp.1587-98, 2015.

D. Chen, H. Wang, J. Chen, Z. Li, S. Li et al., MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells, Front Pharmacol, vol.9, p.502, 2018.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-97, 2004.

R. Garzon, G. A. Calin, and C. M. Croce, MicroRNAs in Cancer, Annu Rev Med, vol.60, pp.167-79, 2009.

S. Huang and X. He, microRNAs: tiny RNA molecules, huge driving forces to move the cell, Protein Cell, vol.1, pp.916-942, 2010.

Y. Zhang and J. Wang, MicroRNAs are important regulators of drug resistance in colorectal cancer, Biol Chem, vol.398, pp.929-967, 2017.

P. W. Stacpoole, N. V. Nagaraja, and A. D. Hutson, Efficacy of dichloroacetate as a lactate-lowering drug, J Clin Pharmacol, vol.43, pp.683-91, 2003.

S. Kankotia and P. W. Stacpoole, Dichloroacetate and cancer: new home for an orphan drug?, Biochim Biophys Acta, vol.1846, pp.617-646, 2014.

M. M. Bowker-kinley, W. I. Davis, P. Wu, R. A. Harris, and K. M. Popov, Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex, Biochemical J, vol.329, pp.191-197, 1998.

S. Bonnet, S. L. Archer, J. Allalunis-turner, A. Haromy, C. Beaulieu et al., A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth, Cancer cell, vol.11, pp.37-51, 2007.

E. D. Michelakis, G. Sutendra, P. Dromparis, L. Webster, A. Haromy et al., Metabolic modulation of glioblastoma with dichloroacetate, Sci Transl Med, vol.2, pp.31-35, 2010.

Q. S. Chu, R. Sangha, J. Spratlin, L. J. Vos, J. R. Mackey et al., A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors, Invest New Drugs, vol.33, pp.603-613, 2015.

I. Papandreou, T. Goliasova, and N. C. Denko, Anticancer drugs that target metabolism: Is dichloroacetate the new paradigm?, Int J Cancer, vol.128, pp.1001-1009, 2011.

E. D. Michelakis, L. Webster, and J. R. Mackey, Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer, Br J Cancer, vol.99, pp.989-94, 2008.

B. M. Madhok, S. Yeluri, S. L. Perry, T. A. Hughes, and D. G. Jayne, Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells, Br J Cancer, vol.102, pp.1746-52, 2010.

S. Shahrzad, K. Lacombe, U. Adamcic, K. Minhas, and B. L. Coomber, Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia, Cancer Lett, vol.297, pp.75-83, 2010.

G. Bertoli, C. Cava, and I. Castiglioni, MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer, Theranostics, vol.5, pp.1122-1165, 2015.

D. Cao, Z. Jia, L. You, Y. Wu, Z. Hou et al., 18beta-glycyrrhetinic acid suppresses gastric cancer by activation of miR-149-3p-Wnt-1 signaling, Oncotarget, vol.7, pp.71960-73, 2016.

L. Si, L. Xu, L. Yin, Y. Qi, X. Han et al., Potent effects of dioscin against pancreatic cancer via miR-149-3P-mediated inhibition of the Akt1 signalling pathway, Br J Pharm, vol.174, pp.553-68, 2017.

M. Kato, J. Li, J. L. Chuang, and D. T. Chuang, Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol, Structure, vol.15, pp.992-1004, 2007.

E. L. Abbot, J. G. Mccormack, C. Reynet, D. G. Hassall, K. W. Buchan et al., Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells, FEBS J, vol.272, pp.3004-3018, 2005.

B. Bhattacharya, S. H. Low, C. Soh, N. Kamal-mustapa, M. Beloueche-babari et al., Increased drug resistance is associated with reduced glucose levels and an enhanced glycolysis phenotype, Br J Pharm, vol.171, pp.3255-67, 2014.

P. W. Stacpoole, The pharmacology of dichloroacetate, Metab: Clin Exp, vol.38, pp.1124-1168, 1989.

A. L. Shroads, X. Guo, V. Dixit, H. P. Liu, M. O. James et al., Age-dependent kinetics and metabolism of dichloroacetate: possible relevance to toxicity, J Pharmacol Exp Therap, vol.324, pp.1163-71, 2008.

K. K. Velpula, A. Bhasin, S. Asuthkar, and A. J. Tsung, Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect, Cancer Res, vol.73, pp.7277-89, 2013.

J. Kluza, P. Corazao-rozas, Y. Touil, M. Jendoubi, C. Maire et al., Inactivation of the HIF-1alpha/ PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants, Cancer Res, vol.72, pp.5035-5082, 2012.

Y. Xuan, H. Hur, I. H. Ham, J. Yun, J. Y. Lee et al., Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolism, Exp Cell Res, vol.321, pp.219-249, 2014.

Y. C. Shen, D. L. Ou, C. Hsu, K. L. Lin, C. Y. Chang et al., Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma, Br J Cancer, vol.108, pp.72-81, 2013.

J. L. Roh, J. Y. Park, E. H. Kim, H. J. Jang, and M. Kwon, Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer, Cancer Lett, vol.371, pp.20-29, 2016.

A. C. Kimmelman and E. White, Autophagy and tumor metabolism, Cell Metab, vol.25, pp.1037-1080, 2017.

G. Sutendra, P. Dromparis, A. Kinnaird, T. H. Stenson, A. Haromy et al., Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene, vol.32, pp.1638-50, 2013.

R. Gudi, M. M. Bowker-kinley, N. Y. Kedishvili, Y. Zhao, and K. M. Popov, Diversity of the pyruvate dehydrogenase kinase gene family in humans, J Biol Chem, vol.270, pp.28989-94, 1995.

M. C. Sugden and M. J. Holness, Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs, Am J Physiol Endocrinol Metab, vol.284, pp.855-62, 2003.

G. Li, M. Li, J. Hu, R. Lei, H. Xiong et al., The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis, Oncogene, vol.36, pp.989-98, 2017.

A. Bellazzo, G. Di-minin, E. Valentino, D. Sicari, T. D. Marchionni et al., Cell-autonomous and cell non-autonomous downregulation of tumor suppressor DAB2IP by microRNA-149-3p promotes aggressiveness of cancer cells, Cell Death Differ, vol.25, pp.1224-1262, 2018.

A. Vazquez, E. E. Bond, A. J. Levine, and G. L. Bond, The genetics of the p53 pathway, apoptosis and cancer therapy, Nat Rev Drug Discov, vol.7, pp.979-87, 2008.

K. Gnanapradeepan, S. Basu, T. Barnoud, A. Budina-kolomets, C. P. Kung et al., The p53 tumor suppressor in the control of metabolism and ferroptosis, Front Endocrinol, vol.9, p.124, 2018.

T. Contractor and C. R. Harris, p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2, Cancer Res, vol.72, pp.560-567, 2012.

B. Iacopetta, TP53 mutation in colorectal cancer, Hum Mutat, vol.21, pp.271-277, 2003.

J. W. Kim and C. V. Dang, Cancer's molecular sweet tooth and the Warburg effect, Cancer Res, vol.66, pp.8927-8957, 2006.

M. Hulse, L. B. Caruso, J. Madzo, Y. Tan, J. S. et al., ADP-ribose) polymerase 1 is necessary for coactivating hypoxia-inducible factor-1-dependent gene expression by Epstein-Barr virus latent membrane protein 1, PLoS Pathog, vol.14, p.1007394, 2018.

J. Hlouschek, V. Ritter, F. Wirsdorfer, D. Klein, V. Jendrossek et al., Targeting SLC25A10 alleviates improved antioxidant capacity and associated radioresistance of cancer cells induced by chronic-cycling hypoxia, Cancer Lett, vol.439, pp.24-38, 2018.