P. Brundin, R. Melki, and R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nat. Rev. Mol. Cell Biol, issue.4, pp.301-307, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01183206

M. D. Geschwind-;-c)-d, M. R. Eisenberg, . P. Sawaya-;-d)-t, M. Knowles, C. M. Vendruscolo et al., The amyloid state and its association with protein misfolding diseases, Prion Diseases, vol.21, p.384, 2014.

F. Chiti, C. M. Dobson, and P. Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade, Annu. Rev. Biochem, vol.86, issue.1, pp.608-621, 2012.

D. Eisenberg and M. Jucker, The amyloid state of proteins in human diseases, Recombinant Tdp-43 Forms Toxic and Stable Amyloid-like Oligomers, Alzheimer's Dementia, vol.148, p.44, 2010.

M. Jucker, L. C. Walker-;-b)-r, T. R. Sowade, and . Jahn, Self-propagation of pathogenic protein aggregates in neurodegenerative diseases, Nat. Commun, vol.501, issue.7465, p.512, 2013.

J. Xu, J. Reumers, J. R. Couceiro, F. De, R. Smet et al., Gain of function of mutant p53 by coaggregation with multiple tumor suppressors, Curr. Protein Pept. Sci, vol.16, issue.2, pp.75-84, 2011.

D. Ishimaru, L. R. Andrade, L. S. Teixeira, P. A. Quesado, L. M. Maiolino et al., Fibrillar Aggregates of the Tumor Suppressor p53 Core Domain, vol.42, pp.9022-9027, 2003.

A. P. Bom, L. P. Rangel, D. C. Costa, G. A. De-oliveira, D. Sanches et al., Mutant p53 Aggregates into Prion-like Amyloid Oligomers and Fibrils: Implications for Cancer, J. Biol. Chem, issue.33, pp.28152-28162, 2012.

C. A. Lasagna-reeves, A. L. Clos, D. Castillo-carranza, U. Sengupta, M. Guerrero-muñoz et al.,

). J. Silva, C. V. Gallo, D. C. Costa, L. P. Rangel-;-c, ). S. Kehrloesser et al., Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further signi?cance of aggregation events in the p53 family, Biochem. Biophys. Res. Commun, vol.430, issue.3, pp.260-267, 1952.

D. C. Costa, G. A. De-oliveira, E. A. Cino, I. N. Soares, L. P. Rangel et al., Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease?, Cold Spring Harbor Perspect. Biol, vol.8, issue.10, p.23614, 2016.

A. C. Joerger, A. R. Fersht-;-b)-p, . P. Lazo-;-c)-d, ). T. Lane-;-d, E. Riley et al., Reverting p53 activation a?er recovery of cellular stress to resume with cell cycle progression, The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches, vol.85, pp.402-412, 1992.

S. N. Loh, The missing Zinc: p53 misfolding and cancer, Metallomics, vol.2, pp.442-449, 2010.

G. Wang and A. R. Fersht, First-order rate-determining aggregation mechanism of p53 and its implications, Sur?ng the p53 network, vol.109, pp.307-310, 2000.

P. A. Muller, K. H. Vousden, ;. Hollstein, D. Sidransky, B. Vogelstein et al., P53 mutations in cancer, p53 mutations in human cancers, vol.15, pp.49-53, 1991.

A. Soragni, D. M. Janzen, L. M. Johnson, A. G. Lindgren, A. Thai-quynh-nguyen et al., A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas, Cancer Cell, vol.29, issue.1, pp.90-103, 2016.

R. Wilcken, G. Wang, F. M. Boeckler, and A. R. Fersht, Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds, Proc. Natl. Acad. Sci. U. S. A, vol.109, issue.34, p.32535, 2012.

J. S. Butler and S. N. Loh, Structure, Function, and Aggregation of the Zinc-Free Form of the p53 DNA Binding Domain, Biochemistry, vol.42, issue.8, pp.2396-2403, 2003.

G. Orazi and D. Givol, p53 reactivation: The link to zinc, Cell Cycle, vol.11, issue.14, pp.2581-2582, 2012.

J. J. Miller, C. Orvain, S. Jozi, R. M. Clarke, J. R. Smith et al., Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53, Multifunctional Compounds for Activation of the p53-Y220C Mutant in Cancer, vol.134, pp.101-114, 2000.

A. R. Blanden, X. Yu, A. J. Wolfe, J. A. Gilleran, D. J. Augeri et al., Synthetic Metallochaperone ZMC1 Rescues Mutant p53 Conformation by Transporting Zinc into Cells as an Ionophore, Mol. Pharmacol, vol.87, issue.5, pp.825-831, 2015.

A. R. Blanden, X. Yu, S. N. Loh, A. J. Levine, D. R. Carpizo-;-c et al., Small molecule restoration of wildtype structure and function of mutant p53 using a novel zincmetallochaperone based mechanism, Thiosemicarbazones Functioning as Zinc Metallochaperones to Reactivate Mutant p53, vol.20, pp.1355-1365, 2014.

;. M. Pharmacol, A. Cirone, L. Garu?, M. Renzo, A. Granato et al., Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally de?cient cells, Cell Death Dis, vol.47, issue.6, pp.1241-1248, 1271.

C. M. Weekley, C. E. He-;-b)-a, D. Stacy, P. V. Palanimuthu, D. S. Bernhardt et al., Zinc(II)-Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity, Curr. Opin. Chem. Biol, vol.11, issue.10, pp.1807-1812, 2016.

M. R. Jones, E. Mathieu, C. Dyrager, S. Faissner, Z. Vaillancourt et al., Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the Last Decade, Front. Pharmacol, vol.8, issue.8, pp.3670-3682, 1247.

D. C. Ferraz-da-costa, N. P. Campos, R. A. Santos, F. H. Guedes-da-silva, M. M. Martins-dinis et al., Resveratrol prevents p53 aggregation in vitro and in breast cancer cells, vol.9, pp.29112-29122, 2018.

M. Kanapathipillai-;-c.-zhaolin, K. Mathumai-;-e, ). Z. Chen, J. Chen, V. G. Keshamouni et al., Polyarginine and its analogues inhibit p53 mutant aggregation and cancer cell proliferation in vitro, Treating p53 Mutant Aggregation-Associated Cancer, vol.10, pp.181-190, 2017.

R. Morphy and Z. Rankovic, Designed Multiple Ligands. An Emerging Drug Discovery Paradigm, J. Med. Chem, issue.21, pp.6523-6543, 2005.

C. B. Levy, A. C. Stumbo, A. P. Bom, E. A. Portari, Y. Carneiro et al., Colocalization of mutant p53 and amyloid-like protein aggregates in breast tumors, Int. J. Biochem. Cell Biol, vol.43, issue.1, p.1784, 2011.

S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien, S. J. Lippard-;-b)-e et al., Fluorescent Sensors for Zn 2+ Based on a Fluorescein Platform: Synthesis, Properties and Intracellular Distribution, J. Am. Chem. Soc, vol.123, issue.32, pp.1996-2006, 2001.

D. Ami, A. Natalello, M. Lotti, and S. M. Doglia, Why and how protein aggregation has to be studied in vivo, Microb. Cell Fact, p.17, 2013.

N. Lukashchuk, K. H. Vousden-;-b)-n, A. Rodrigues, M. E. Rowan, and . Smith, Ubiquitination and degradation of mutant p53, Mol. Cell. Biol, issue.23, pp.8284-8295, 2007.

I. B. Kerr, W. F. Bodmer, J. V. Gannon, D. P. Lane-;-c)-d, S. Lane et al., ), a001107; (e) V. Rotter, p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells, Proc. Natl. Acad. Sci. U. S. A, vol.87, issue.19, p.2613, 1983.

R. Kayed, E. Head, J. L. Thompson, T. M. Mcintire, S. C. Milton et al., Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis, Science, vol.300, issue.5618, pp.486-489, 2003.

G. Fine and S. M. Saeed, Thio?avin-T for Amyloid Detection, Am. J. Clin. Pathol, issue.5, pp.588-593, 1967.

J. Xu, J. Reumers, J. R. Couceiro, F. De, R. Smet et al., Gain of function of mutant p53 by coaggregation with multiple tumor suppressors, Nat. Chem. Biol, vol.7, issue.5, pp.285-295, 2011.

P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho-;-m, J. Shah et al., Application of the Halogen Bond in Protein Systems, Halogen-p Interactions in the Cytochrome P450 Active Site: Structural Insights into Human CYP2B6 Substrate Selectivity, vol.101, pp.2759-2761, 2004.

A. N. Bullock, J. Henckel, B. S. Dedecker, C. M. Johnson, P. V. Nikolova et al., Thermodynamic stability of wild-type and mutant p53 core domain, Proc. Natl. Acad. Sci. U. S. A, vol.94, issue.26, pp.14338-14342, 1997.

A. E. Martell and R. D. Hancock, Metal Complexes in Aqueous Solutions, 1996.

J. Choi, J. J. Braymer, R. P. Nanga, A. Ramamoorthy, M. H. Lim-;-c)-w et al., Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes, Proc. Natl. Acad. Sci. U. S. A, issue.51, pp.6097-6104, 1979.

K. R. Gee, Z. L. Zhou, D. Ton-that, S. L. Sensi, and J. H. Weiss, Measuring zinc in living cells.: A new generation of sensitive and selective ?uorescent probes, Cell Calcium, issue.5, pp.245-251, 2002.

R. E. Carraway and P. R. Dobner, Zinc pyrithione induces ERK-and PKC-dependent necrosis distinct from TPENinduced apoptosis in prostate cancer cells, Biochim. Biophys. Acta, vol.1823, issue.2, pp.544-557, 2012.

K. K. Hoe, C. S. Verma, and D. P. Lane, Drugging the p53 pathway: understanding the route to clinical efficacy, Nat. Rev. Drug Discovery, vol.13, issue.3, pp.217-236, 2014.

K. F. Macleod, N. Sherry, G. Hannon, D. Beach, T. Tokino et al., Aaronson, p53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes, Genes Dev, vol.9, issue.8, pp.3959-3969, 1995.

C. Gaiddon, M. Lokshin, J. Ahn, T. Zhang, C. Prives-;-b et al., A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain, Mutant p53 in Cancer: New Functions and Therapeutic Opportunities, vol.21, pp.6507-6521, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-02360323

C. M. Fenoglio-preiser, J. Wang, G. N. Stemmermann, and A. Noffsinger, TP53 and gastric carcinoma: A review, Hum. Mutat, vol.21, issue.3, pp.258-270, 2003.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol.65, issue.1, pp.55-63, 1983.

H. Zhu, K. Yang, Y. Xie, Y. Lin, Q. Mao et al., Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells, World J. Surg. Oncol, p.22, 2013.

A. E. Sayan, B. S. Sayan, V. Gogvadze, D. Dinsdale, U. Nyman et al., Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells, Cancer Biol. Ther, vol.27, issue.8, p.47, 2000.

S. Elmore-;-c.-candé, N. Vahsen, C. Garrido, and G. Kroemer, Apoptosis-inducing factor (AIF): caspase-independent a?er all, Apoptosisinducing factor: structure, function, and redox regulation, vol.35, pp.2545-2579, 2004.

P. Stambolsky, L. Weisz, I. Shats, Y. Klein, N. Gold?nger et al., The Fundamental Role of the p53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy, Cell Death Differ, vol.18, issue.6, pp.1561-1567, 2006.

K. Hientz, A. Mohr, D. Bhakta-guha, and T. Efferth, The role of p53 in cancer drug resistance and targeted chemotherapy, OncoTargets Ther, vol.8, issue.5, pp.8921-8946, 2016.

X. Zhou, Q. Hao, H. Lu, ;. Blandino, A. J. Levine et al., Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy, J. Mol. Cell Biol, vol.11, p.477, 1999.

Z. H. Siddik-;-h.-perlman, X. Zhang, M. W. Chen, K. Walsh, and R. Buttyan, An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis, Cell Death Differ, vol.22, issue.47, pp.657-665, 1999.

A. Pearce, M. Haas, R. Viney, S. Pearson, P. Haywood et al., Incidence and severity of selfreported chemotherapy side effects in routine care: A prospective cohort study, PLoS One, vol.12, issue.10, p.184360, 2017.

C. F. Cheok, Protecting normal cells from the cytotoxicity of chemotherapy, Cell Cycle, vol.11, issue.12, pp.2227-2228, 2012.

I. M. Van-leeuwen, B. Rao, M. C. Sachweh, and S. Laín, An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells, Cold Spring Harbor Perspect. Biol, vol.11, issue.9, p.1222, 2010.

T. E. Wallach and J. R. Bayrer, Intestinal Organoids: New Frontiers in the Study of Intestinal Disease and Physiology, J. Pediatr. Gastroenterol. Nutr, vol.64, issue.2, pp.180-185, 2017.

A. Fatehullah, S. H. Tan, and N. Barker, Organoids as an in vitro model of human development and disease, Nat. Cell Biol, vol.18, p.246, 2016.