J. Chiche, M. C. Brahimi-horn, and J. Pouyssegur, Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer, J. Cell Mol. Med, vol.14, pp.771-794, 2010.

G. L. Semenza, Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics, Oncogene, vol.29, pp.625-634, 2010.

K. I. Block, C. Gyllenhaal, L. Lowe, A. Amedei, A. R. Amin et al., Semin. Canc. Biol, vol.35, pp.276-304, 2015.

F. Bernges and E. Holler, The reaction of platinum(II) complexes with DNA. Kinetics of intrastrand crosslink formation in vitro, Nucleic Acids Res, vol.19, pp.1483-1489, 1991.

S. Benosman, I. Gross, N. Clarke, A. G. Jochemsen, K. Okamoto et al., Multiple neurotoxic stresses converge on MDMX proteolysis to cause neuronal apoptosis, Cell Death Differ, vol.14, issue.12, 2007.

S. Benosman, X. Meng, Y. V. Grabowiecki, L. Palamiuc, L. Hritcu et al., Complex regulation of p73 isoforms after alteration of amyloid precursor polypeptide (APP) function and DNA damage in neurons, J. Biol. Chem, vol.286, pp.43013-43025, 2011.

M. Galanski, M. A. Jakupec, and B. K. Keppler, Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches, Curr. Med. Chem, vol.12, pp.2075-2094, 2005.

P. C. Bruijnincx and P. J. Sadler, New trends for metal complexes with anticancer activity, Curr. Opin. Chem. Biol, vol.12, pp.197-206, 2008.

M. A. Jakupec, M. Galanski, V. B. Arion, C. G. Hartinger, and B. K. Keppler, Antitumour metal compounds: more than theme and variations, Dalton Trans, pp.183-194, 2008.

M. Markman, Toxicities of the platinum antineoplastic agents, Expet Opin. Drug Saf, vol.2, pp.597-607, 2003.

L. Kelland, The resurgence of platinum-based cancer chemotherapy, Nat. Rev. Canc, vol.7, pp.573-584, 2007.

C. S. Allardyce and P. J. Dyson, Ruthenium in medicine: current clinical uses and future prospects, Platin. Met. Rev, vol.45, p.62, 2001.

P. J. Dyson and G. Sava, Metal-based antitumour drugs in the post genomic era, Dalton Trans, pp.1929-1933, 2006.

B. K. Keppler, W. Balzer, and V. Seifried, Synthesis and antitumor activity of triazoliumbis(triazole)-tetrachlororuthenate (III) and bistriazolium-triazolepentachlororuthenate (III), Arzneimittelforschung, vol.37, pp.770-771, 1987.

G. Sava, S. Pacor, S. Zorzet, E. Alessio, and G. Mestroni, Antitumour properties of dimethylsulphoxide ruthenium (II) complexes in the Lewis lung carcinoma system, Pharmacol. Res, vol.21, pp.617-628, 1989.

S. Fruhauf and W. J. Zeller, New platinum, titanium, and ruthenium complexes with different patterns of DNA damage in rat ovarian tumor cells, Cancer Res, vol.51, pp.2943-2948, 1991.

R. E. Morris, R. E. Aird, S. M. Pdel, H. Chen, J. Cummings et al., Inhibition of cancer cell growth by ruthenium(II) arene complexes, J. Med. Chem, vol.44, pp.3616-3621, 2001.

A. Bergamo, C. Gaiddon, J. H. Schellens, J. H. Beijnen, and G. Sava, Approaching tumour therapy beyond platinum drugs Status of the art and perspectives of ruthenium drug candidates, J. Inorg. Biochem, vol.106, pp.90-99, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02360300

H. Y. Mei and J. K. Barton, Tris(tetramethylphenanthroline)ruthenium(II): a chiral probe that cleaves A-DNA conformations, Proc. Natl. Acad. Sci. U. S. A, vol.85, pp.1339-1343, 1988.

V. Brabec, DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair, Prog. Nucleic Acid Res. Mol. Biol, vol.71, pp.1-68, 2002.

C. Gaiddon, P. Jeannequin, P. Bischoff, M. Pfeffer, C. Sirlin et al., Ruthenium (II)-derived organometallic compounds induce cytostatic and cytotoxic effects on mammalian cancer cell lines through p53-dependent and p53-independent mechanisms, J. Pharmacol. Exp. Therapeut, vol.315, pp.1403-1411, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-02360373

R. L. Hayward, Q. C. Schornagel, R. Tente, J. S. Macpherson, R. E. Aird et al., Investigation of the role of Bax, p21/Waf1 and p53 as determinants of cellular responses in HCT116 colorectal cancer cells exposed to the novel cytotoxic ruthenium(II) organometallic agent, RM175, Cancer Chemother. Pharmacol, vol.55, pp.577-583, 2005.

S. Chatterjee, S. Kundu, A. Bhattacharyya, C. G. Hartinger, and P. J. Dyson, The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways, J. Biol. Inorg. Chem, vol.13, pp.1149-1155, 2008.

M. Klajner, P. Hebraud, C. Sirlin, C. Gaiddon, and S. Harlepp, DNA binding to an anticancer organo-ruthenium complex, J. Phys. Chem. B, vol.114, pp.14041-14047, 2010.

X. Meng, M. L. Leyva, M. Jenny, I. Gross, S. Benosman et al., A ruthenium-containing organometallic compound reduces tumor growth through induction of the endoplasmic reticulum stress gene CHOP, Cancer Res, vol.69, issue.13, pp.5458-5466, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-02360367

V. Vidimar, X. Meng, M. Klajner, C. Licona, L. Fetzer et al., Induction of caspase 8 and reactive oxygen species by ruthenium-derived anticancer compounds with improved water solubility and cytotoxicity, Biochem. Pharmacol, vol.84, pp.1428-1436, 2012.

A. D. Ryabov, V. S. Sukharev, L. Alexandrova, R. L. Lagadec, and M. Pfeffer, New synthesis and new bio-application of cyclometalated ruthenium(II) complexes for fast mediated electron transfer with peroxidase and glucose oxidase, Inorg. Chem, vol.40, pp.6529-6532, 2001.

L. Fetzer, B. Boff, M. Ali, M. Xiangjun, J. P. Collin et al., Library of second-generation cycloruthenated compounds and evaluation of their biological properties as potential anticancer drugs: passing the nanomolar barrier, Dalton Trans, vol.40, pp.8869-8878, 2011.

H. R. Bautista, R. O. Saavedra-diaz, L. Q. Shen, C. Orvain, C. Gaiddon et al., Impact of cyclometalated ruthenium(II) complexes on lactate dehydrogenase activity and cytotoxicity in gastric and colon cancer cells, J. Inorg. Biochem, vol.163, pp.28-38, 2016.

F. Wang, J. Xu, A. Habtemariam, J. Bella, and P. J. Sadler, Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: detection of a sulfenato intermediate, J. Am. Chem. Soc, vol.127, pp.17734-17743, 2005.

M. A. Jakupec, E. Reisner, A. Eichinger, M. Pongratz, V. B. Arion et al., Redox-active antineoplastic ruthenium complexes with indazole: correlation of in vitro potency and reduction potential, J. Med. Chem, vol.48, pp.2831-2837, 2005.

C. Licona, M. E. Spaety, A. Capuozzo, M. Ali, R. Santamaria et al., A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin, Oncotarget, vol.8, issue.2, pp.2568-2584, 2017.

C. Gaiddon, M. Tapia, and J. P. Loeffler, The tissue-specific transcription factor Pit-1/ GHF-1 binds to the c-fos serum response element and activates c-fos transcription, Mol. Endocrinol, vol.13, pp.742-751, 1999.

C. Gaiddon, L. Mercken, C. Bancroft, and J. P. Loeffler, Transcriptional effects in GH3 cells of Gs alpha mutants associated with human pituitary tumors: stimulation of adenosine 3',5'-monophosphate response element-binding protein-mediated transcription and of prolactin and growth hormone promoter activity via protein kinase A, Endocrinology, vol.136, pp.4331-4338, 1995.

J. H. Lim, C. Luo, F. Vazquez, and P. Puigserver, Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization, Cancer Res, vol.74, pp.3535-3545, 2014.

T. Zhang and W. L. Kraus, SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions, Biochim. Biophys. Acta, vol.1804, pp.1666-1675, 2010.

Q. Ke and M. Costa, Hypoxia-inducible factor-1 (HIF-1), vol.70, pp.1469-1480, 2006.

B. G. Wouters and M. Koritzinsky, Hypoxia signalling through mTOR and the unfolded protein response in cancer, Nat. Rev. Canc, vol.8, pp.851-864, 2008.

A. Nandal, J. C. Ruiz, P. Subramanian, S. Ghimire-rijal, R. A. Sinnamon et al., Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2, Cell Metabol, vol.14, pp.647-657, 2011.

L. Leyva, C. Sirlin, L. Rubio, C. Franco, R. L. Lagadec et al., Synthesis of cycloruthenated compounds as potential anticancer agents, Eur. J. Inorg. Chem, pp.3055-3066, 2007.

D. M. Noonan, R. Benelli, and A. Albini, Angiogenesis and cancer prevention: a vision, Recent Results Canc. Res, vol.174, pp.219-224, 2007.

A. D. Ryabov, Transition metal chemistry of glucose oxidase, horseradish peroxidase, and related enzymes, Adv. Inorg. Chem, vol.55, pp.201-270, 2004.

F. Kruiswijk, C. F. Labuschagne, and K. H. Vousden, p53 in survival, death and metabolic health: a lifeguard with a licence to kill, Nat. Rev. Mol. Cell Biol, vol.16, pp.393-405, 2015.

Z. Ai, Y. Lu, S. Qiu, and Z. Fan, Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism, Cancer Lett, vol.373, pp.36-44, 2016.

M. J. Chow, C. Licona, G. Pastorin, G. Mellitzer, W. H. Ang et al., Structural tuning of organoruthenium compounds allows oxidative switch to control ER stress pathways and bypass multidrug resistance, Chem. Sci, vol.7, pp.4117-4124, 2016.

B. Kong, T. Cheng, W. Wu, I. Regel, S. Raulefs et al., Hypoxia-induced endoplasmic reticulum stress characterizes a necrotic phenotype of pancreatic cancer, Oncotarget, vol.6, pp.32154-32160, 2015.

S. G. De-la-cadena, K. Hernandez-fonseca, I. Camacho-arroyo, and L. Massieu, Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7-and calpain-mediated caspase-12 activation, Apoptosis: Int. J. Program. Cell Death, vol.19, pp.414-427, 2014.

A. Gentilella, S. C. Kozma, and G. Thomas, A liaison between mTOR signaling, ribosome biogenesis and cancer, Biochim. Biophys. Acta, vol.1849, pp.812-820, 2015.

C. Appenzeller-herzog and M. N. Hall, Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling, Trends Cell Biol, vol.22, pp.274-282, 2012.