, Cells were grown in RPMI (Roswell Park Memorial Institute medium, Dominique DUTSCHER SAS-Head Office: 30, rue de l'Industrie-BP62-67172 BRUMATH cedex, France) with 10% fetal bovine serum, Materials AGS and KATOIII cells were obtained from ATCC (ATCC ® : LGC Standards S.a.r.l. 6, rue Alfred Kastler BP 83076 F-67123 Molsheim Cedex France: CRL-1739?, HTB-103 TM )

B. and P. , 64293 Darmstadt, Germany) and 1% penicillin/streptomycin (PAN-Biotech, Mycoplasma contamination was tested negative using PlasmoTest, vol.13, p.31400, 200152.

F. Toulouse, Healthy tissue samples, gastric tumor biopsies, and distant normal gastric tissues (n = 26) were obtained from the Digestive Surgery department of Hautepierre Hospital (CHU Hautepierre, Strasbourg 67200, France, authorization number: NCT02491840) or the National Cancer Research Center, EST4: IDRCB2015-A00198-41/PRI2014-HUSn ? 6042) by the Human Ethics Committee of the Strasbourg University Hospital

, Cell survival Assay A total of 10,000 cells were seeded per well in 96-well microplates (Falcon Multiwell, Dutscher: 30, rue de l'Industrie-BP62, 67170 Brumath, France), 24 h prior to any treatment. Cisplatin was applied for 48 h in fresh medium. MTT assay was performed as previously described by replacing the medium with fresh medium supplemented with 5 mg/L MTT (Sigma, Lyon-Saint Exupéry BP 113, 69125 Lyon, France) for 1 h [50]. Cells were lysed in in DMSO 100% (100 µL/wells). Measurements were performed at 550 nm with the Tristar 2 Multimode Reader

M. Mihmanli, E. Ilhan, U. O. Idiz, A. Alemdar, and U. Demir, Recent developments and innovations in gastric cancer, World J. Gastroenterol, vol.22, pp.4307-4320, 2016.

A. M. Florea and D. Busselberg, Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects, Cancers, vol.3, pp.1351-1371, 2011.

D. Huang, H. Duan, H. Huang, X. Tong, Y. Han et al., Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition, Sci. Rep, 2016.

F. Pietrantonio, F. De-braud, V. Da-prat, F. Perrone, M. A. Pierotti et al., A review on biomarkers for prediction of treatment outcome in gastric cancer, Anticancer Res, vol.33, pp.1257-1266, 2013.

H. I. Grabsch and P. Tan, Gastric cancer pathology and underlying molecular mechanisms, Dig. Surg, vol.30, pp.150-158, 2013.

C. Mahu, A. P. Purcarea, C. M. Gheorghe, and M. R. Purcarea, Molecular events in gastric carcinogenesis, J. Med. Life, vol.7, pp.375-378, 2014.

N. Rivlin, R. Brosh, M. Oren, and V. Rotter, Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis, Genes Cancer, vol.2, pp.466-474, 2011.

A. A. Osman, D. M. Neskey, P. Katsonis, A. A. Patel, A. M. Ward et al., Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients, Cancer Res, vol.75, pp.1205-1215, 2015.

M. Oren and V. Rotter, Mutant p53 gain-of-function in cancer, Cold Spring Harb. Perspect. Biol, 1107.

C. Gaiddon, M. Lokshin, J. Ahn, T. Zhang, and C. Prives, A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain, Mol. Cell Biol, vol.21, pp.1874-1887, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-02360323

C. H. Arrowsmith, Structure and function in the p53 family, Cell Death Differ, vol.6, pp.1169-1173, 1999.

A. I. Zaika and W. El-rifai, The role of p53 protein family in gastrointestinal malignancies, Cell Death Differ, vol.13, pp.935-940, 2006.

K. Tomkova, A. Belkhiri, and W. El-rifai, Zaika, A.I. p73 isoforms can induce T-cell factor-dependent transcription in gastrointestinal cells, Cancer Res, vol.64, pp.6390-6393, 2004.

K. Tomkova, W. El-rifai, A. Vilgelm, M. C. Kelly, T. C. Wang et al., The gastrin gene promoter is regulated by p73 isoforms in tumor cells, Oncogene, vol.25, pp.6032-6036, 2006.

A. E. Vilgelm, S. M. Hong, M. K. Washington, J. Wei, H. Chen et al., Characterization of DeltaNp73 expression and regulation in gastric and esophageal tumors, Oncogene, vol.29, pp.5861-5868, 2010.

L. Ellis, P. W. Atadja, and R. W. Johnstone, Epigenetics in cancer: Targeting chromatin modifications, Mol. Cancer Ther, vol.8, pp.1409-1420, 2009.

L. Hong, Z. Yang, J. Ma, and D. Fan, Function of miRNA in controlling drug resistance of human cancers, Curr. Drug Targets, vol.14, pp.1118-1127, 2013.

A. Hagelkruys, A. Sawicka, M. Rennmayr, and C. Seiser, The biology of HDAC in cancer: The nuclear and epigenetic components, Handb. Exp. Pharmacol, vol.206, pp.13-37, 2011.

A. J. De-ruijter, A. H. Van-gennip, H. N. Caron, S. Kemp, and A. B. Van-kuilenburg, Histone deacetylases (HDACs): Characterization of the classical HDAC family, Biochem. J, vol.370, pp.737-749, 2003.

K. Mutze, R. Langer, K. Becker, K. Ott, A. Novotny et al., Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer, Ann. Surg. Oncol, vol.17, pp.3336-3343, 2010.

Z. H. Kang, C. Y. Wang, W. L. Zhang, J. T. Zhang, C. H. Yuan et al., Histone deacetylase HDAC4 promotes gastric cancer SGC-7901 cells progression via p21 repression, PLoS ONE, vol.9, 2014.

L. J. Juan, W. J. Shia, M. H. Chen, W. M. Yang, E. Seto et al., Histone deacetylases specifically down-regulate p53-dependent gene activation, J. Biol. Chem, vol.275, pp.20436-20443, 2000.

I. Riquelme, P. Letelier, A. L. Riffo-campos, P. Brebi, and J. C. Roa, Emerging role of miRNAs in the drug resistance of gastric cancer, Int. J. Mol. Sci, vol.17, 2016.

D. Sekar, R. Krishnan, K. Thirugnanasambantham, B. Rajasekaran, V. I. Islam et al., Significance of microRNA 21 in gastric cancer, Clin. Res. Hepatol. Gastroenterol, 2016.

H. Ishiguro, M. Kimura, and H. Takeyama, Role of microRNAs in gastric cancer, World J. Gastroenterol, vol.20, pp.5694-5699, 2014.

Y. K. Kim, J. Yu, T. S. Han, S. Y. Park, B. Namkoong et al., Functional links between clustered microRNAs: Suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer, Nucl. Acids Res, vol.37, pp.1672-1681, 2009.

T. Takagi, A. Iio, Y. Nakagawa, T. Naoe, N. Tanigawa et al., Decreased expression of microRNA-143 and -145 in human gastric cancers, Oncology, vol.77, pp.12-21, 2009.

S. Akiyoshi, T. Fukagawa, H. Ueo, M. Ishibashi, Y. Takahashi et al., Clinical significance of miR-144-ZFX axis in disseminated tumour cells in bone marrow in gastric cancer cases, Br. J. Cancer, vol.107, pp.1345-1353, 2012.

L. Xia, D. Zhang, R. Du, Y. Pan, L. Zhao et al., Fan, D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells, Int. J. Cancer, vol.123, pp.372-379, 2008.

C. Licona, M. E. Spaety, A. Capuozzo, M. Ali, R. Santamaria et al., A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin, Oncotarget, 2016.

V. Nogales, W. C. Reinhold, S. Varma, A. Martinez-cardus, C. Moutinho et al., Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs, Oncotarget, vol.7, pp.3084-3097, 2016.

D. Giorgio, E. Brancolini, and C. , Regulation of class IIa HDAC activities: It is not only matter of subcellular localization, Epigenomics, vol.8, pp.251-269, 2016.

L. Marek, A. Hamacher, F. K. Hansen, K. Kuna, H. Gohlke et al., Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells, J. Med. Chem, vol.56, pp.427-436, 2013.

T. C. Chou, Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies, Pharmacol. Rev, vol.58, pp.621-681, 2006.

V. Duong, C. Bret, L. Altucci, A. Mai, C. Duraffourd et al., Specific activity of class II histone deacetylases in human breast cancer cells, Mol. Cancer Res, vol.6, pp.1908-1919, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00351047

S. K. Garattini, D. Basile, M. Cattaneo, V. Fanotto, E. Ongaro et al., Molecular classifications of gastric cancers: Novel insights and possible future applications, World J. Gastrointest. Oncol, vol.9, pp.194-208, 2017.

I. Lopez, A. S. Tournillon, R. P. Martins, K. Karakostis, L. Malbert-colas et al., Fahraeus, R. p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress, Cell Death Differ, vol.24, pp.1717-1729, 2017.

X. Li, Y. Zhao, Q. Xia, L. Zheng, L. Liu et al., Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding, Cell Death Dis, vol.7, 2016.

L. Colarossi, L. Memeo, C. Colarossi, E. Aiello, A. Iuppa et al., Inhibition of histone deacetylase 4 increases cytotoxicity of docetaxel in gastric cancer cells, Proteomics Clin. Appl, vol.8, pp.924-931, 2014.

L. S. Zeng, X. Z. Yang, Y. F. Wen, S. J. Mail, M. H. Wang et al., Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma, Aging, vol.8, pp.1236-1249, 2016.

A. L. Cohen, S. R. Piccolo, L. Cheng, R. Soldi, B. Han et al., Genomic pathway analysis reveals that EZH2 and HDAC4 represent mutually exclusive epigenetic pathways across human cancers, BMC Med. Genom, vol.6, 2013.

Y. F. Shen, A. M. Wei, Q. Kou, Q. Y. Zhu, and L. Zhang, Histone deacetylase 4 increases progressive epithelial ovarian cancer cells via repression of p21 on fibrillar collagen matrices, Oncol. Rep, vol.35, pp.948-954, 2016.

N. Amodio, M. A. Stamato, A. M. Gulla, E. Morelli, E. Romeo et al., Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma, Mol. Cancer Ther, 2016.

S. D. Vallabhapurapu, S. K. Noothi, D. A. Pullum, C. H. Lawrie, R. Pallapati et al., Transcriptional repression by the HDAC4-RelB-p52 complex regulates multiple myeloma survival and growth, Nat. Commun, vol.6, 2015.

A. J. Wilson, D. S. Byun, S. Nasser, L. B. Murray, K. Ayyanar et al., HDAC4 promotes growth of colon cancer cells via repression of p21, Mol. Biol. Cell, vol.19, pp.4062-4075, 2008.

B. Song, Y. Wang, Y. Xi, K. Kudo, S. Bruheim et al., Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells, Oncogene, vol.28, pp.4065-4074, 2009.

C. Imbriano, A. Gurtner, F. Cocchiarella, S. Di-agostino, V. Basile et al., Direct p53 transcriptional repression: In vivo analysis of CCAAT-containing G2/M promoters, Mol. Cell Biol, vol.25, pp.3737-3751, 2005.

V. Basile, R. Mantovani, and C. Imbriano, DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines, J. Biol. Chem, vol.281, pp.2347-2357, 2006.

G. D. Kao, W. G. Mckenna, M. G. Guenther, R. J. Muschel, M. A. Lazar et al., Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response, J. Cell Biol, vol.160, pp.1017-1027, 2003.

C. Gaiddon, M. De-tapia, and J. P. Loeffler, The tissue-specific transcription factor Pit-1/GHF-1 binds to the c-fos serum response element and activates c-fos transcription, Mol. Endocrinol, vol.13, pp.742-751, 1999.

V. Vidimar, X. Meng, M. Klajner, C. Licona, L. Fetzer et al., Induction of caspase 8 and reactive oxygen species by ruthenium-derived anticancer compounds with improved water solubility and cytotoxicity, Biochem. Pharmacol, vol.84, pp.1428-1436, 2012.

M. Antoine, C. Gaiddon, and J. P. Loeffler, Ca2+/calmodulin kinase types II and IV regulate c-fos transcription in the AtT20 corticotroph cell line, Mol. Cell Endocrinol, vol.120, pp.1-8, 1996.

S. Benosman, X. Meng, Y. Von-grabowiecki, L. Palamiuc, L. Hritcu et al., Complex regulation of p73 isoforms after alteration of amyloid precursor polypeptide (APP) function and DNA damage in neurons, J. Biol. Chem, vol.286, pp.43013-43025, 2011.

D. Emig, N. Salomonis, J. Baumbach, T. Lengauer, B. R. Conklin et al., AltAnalyze and DomainGraph: Analyzing and visualizing exon expression data, Nucl. Acids Res, vol.38, pp.755-762, 2010.