C. Patrono, J. Morais, and C. Baigent, Antiplatelet agents for the treatment and prevention of coronary atherothrombosis, J. Am. Coll. Cardiol, vol.70, pp.1760-1776, 2017.

G. J. Roth, N. Stanford, and P. W. Majerus, Acetylation of prostaglandin synthase by aspirin, Proc. Natl. Acad. Sci. USA, vol.72, pp.3073-3076, 1975.

M. Hamberg, J. Svensson, and B. Samuelsson, Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides, Proc. Natl. Acad. Sci. USA, vol.72, pp.2994-2998, 1975.

N. Nakahata, Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology, Pharmacol. Ther, vol.118, pp.18-35, 2008.

A. J. Cayatte, Y. Du, and J. Oliver-krasinski, The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice, Arterioscler. Thromb. Vasc. Biol, vol.20, pp.1724-1729, 2000.

S. S. Smyth, E. D. Reis, H. Väänänen, W. Zhang, and B. S. Coller, Variable protection of ?3-integrin-deficient mice from thrombosis initiated by different mechanisms, Blood, vol.98, pp.1055-1062, 2001.

K. Kondo, Y. Suzuki, Y. Ikeda, and K. Umemura, Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation, Eur. J. Pharmacol, pp.53-57, 2002.

S. Grüner, M. Prostredna, and B. Aktas, Anti-glycoprotein VI treatment severely compromises hemostasis in mice with reduced ?2?1 levels or concomitant aspirin therapy, Circulation, vol.110, pp.2946-2951, 2004.

X. Wang, P. L. Smith, M. Y. Hsu, M. L. Ogletree, and W. A. Schumacher, Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor, J. Thromb. Haemost, issue.4, pp.403-410, 2006.

C. Schulz, I. Konrad, and S. Sauer, Effect of chronic treatment with acetylsalicylic acid and clopidogrel on atheroprogression and atherothrombosis in apoe-deficient mice in vivo, Thromb. Haemost, vol.99, pp.190-195, 2008.

D. Cherpokova and B. Nieswandt, Mouse models of thrombosis, Platelets in Thrombotic and Non-Thrombotic Disorders. Pathophysiology, Pharmacology and Therapeutics: an Update, pp.681-698, 2017.

M. Allende, E. Molina, and E. Guruceaga, Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis without increased bleeding risk, Cardiovasc. Res, vol.110, pp.309-318, 2016.

B. Decouture, E. Dreano, and T. Belleville-rolland, Impaired platelet activation and cAMP homeostasis in MRP4-deficient mice, Blood, vol.126, pp.1823-1830, 2015.

V. Molina, M. L. Arruzazabala, D. Carbajal, and R. Más, Synergistic effect of D-003 and aspirin on experimental thrombosis models, Prostaglandins Leukot. Essent. Fat Acids, vol.68, pp.305-310, 2003.

S. W. Huang, H. L. Kuo, and M. T. Hsu, A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models, Thromb. Haemost, vol.116, pp.285-299, 2016.

Y. Kalish, Z. Malyutin, and E. Shai, A mouse model to study thrombotic complications of thalassemia, Thromb. Res, vol.135, pp.521-525, 2015.

C. Nonne, N. Lenain, and B. Hechler, Importance of platelet phospholipase C?2 signaling in arterial thrombosis as a function of lesion severity, Arterioscler. Thromb. Vasc. Biol, vol.25, pp.1293-1298, 2005.

G. Born and C. Patrono, Antiplatelet drugs, Br. J. Pharmacol, vol.147, pp.241-251, 2006.

G. J. Broze, A tail vein bleeding time model and delayed bleeding in hemophiliac mice combined fresh frozen plasma with recombinant factor VIIa in restoring hemostasis for invasive procedures in children with liver diseases, Thromb. Haemost, vol.85, pp.747-748, 2001.

V. Evangelista, S. Manarini, and A. D. Santo, De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin, Circ. Res, vol.98, pp.593-595, 2006.

J. Nagelschmitz, M. Blunck, J. Kraetzschmar, M. Ludwig, G. Wensing et al., Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers, Clin. Pharmacol. Adv. Appl, vol.6, pp.51-59, 2014.

A. Schiviz, D. Magirr, P. Leidenmühler, M. Schuster, E. M. Muchitsch et al., Influence of genetic background on bleeding phenotype in the tail-tip bleeding model and recommendations for standardization: communication from the SSC of the ISTH, J. Thromb. Haemost, vol.12, pp.1940-1942, 2014.

E. Tarantino, P. Amadio, and I. Squellerio, Role of thromboxane-dependent platelet activation in venousthrombosis: aspirin effects in mouse model, Pharmacol. Res, vol.107, pp.415-425, 2016.

W. Li, M. Nieman, and A. Gupta, Ferric chloride-induced murine thrombosis models, J. Vis. Exp, vol.115, pp.1-12, 2016.

Y. Kawamura, Y. Takahari, and N. Tamura, Imaging of structural changes in endothelial cells and thrombus formation at the site of FeCl(3)-induced injuries in mice cremasteric arteries, J. Atheroscler. Thromb, vol.16, pp.807-814, 2009.

N. Faraday, K. Schunke, and S. Saleem, Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils, PLoS One, vol.8, p.71447, 2013.

R. Adili, B. E. Tourdot, and K. Mast, First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis, Arterioscler. Thromb. Vasc. Biol, vol.37, pp.1828-1839, 2017.

A. Eckly, B. Hechler, and M. Freund, Mechanisms underlying FeCl3-induced arterial thrombosis, J. Thromb. Haemost, vol.9, pp.779-789, 2011.

P. C. Armstrong, N. S. Kirkby, Z. N. Zain, M. Emerson, J. A. Mitchell et al., Thrombosis is reduced by inhibition of COX-1, but unaffected by inhibition of COX-2, in an acute model of platelet activation in the mouse, PLoS One, vol.6, p.20062, 2011.

B. Kastetter, A. B. Matrai, and B. C. Cooley, Optimizing outcome measurement with murine ferric chloride-induced thrombosis, Blood Coagul. Fibrinolysis, vol.29, pp.636-643, 2018.

B. Decouture, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.149, pp.46-51, 2019.