F. J. Burt, Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen, Lancet Infect. Dis, vol.17, pp.107-117, 2017.

L. A. Silva and T. S. Dermody, Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies, J. Clin. Invest, vol.127, pp.737-749, 2017.

W. K. Greene, E. Baker, T. H. Rabbitts, and U. R. Kees, Genomic structure, tissue expression and chromosomal location of the LIM-only gene, SLIM1, Gene, vol.232, pp.203-207, 1999.

J. Schessl, S. Feldkirchner, C. Kubny, and B. Schoser, Reducing body myopathy and other FHL1-related muscular disorders, Semin. Pediatr. Neurol, vol.18, pp.257-263, 2011.

L. Gueneau, Mutations of the FHL1 gene cause Emery-Dreifuss muscular dystrophy, Am. J. Hum. Genet, vol.85, pp.338-353, 2009.

Y. S. Ooi, K. M. Stiles, C. Y. Liu, G. M. Taylor, and M. Kielian, Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry, PLoS Pathog, vol.9, p.1003835, 2013.

A. Karlas, A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs, Nat. Commun, vol.7, p.11320, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01515939

R. Zhang, Mxra8 is a receptor for multiple arthritogenic alphaviruses, Nature, vol.557, pp.570-574, 2018.

A. Tanaka, Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection, J. Virol, vol.91, pp.1-22, 2017.

I. Schuffenecker, Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak, PLoS Med, vol.3, p.263, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-01659363

T. Shathasivam, T. Kislinger, and A. O. Gramolini, Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues, J. Cell. Mol. Med, vol.14, pp.2702-2720, 2010.

S. Brown, Characterization of two isoforms of the skeletal muscle LIM protein 1, SLIM1. Localization of SLIM1 at focal adhesions and the isoform slimmer in the nucleus of myoblasts and cytoplasm of myotubes suggests distinct roles in the cytoskeleton and in nuclear-cytoplasmic communication, J. Biol. Chem, vol.274, pp.27083-27091, 1999.

A. Krempler, S. Kollers, R. Fries, and B. Brenig, Isolation and characterization of a new FHL1 variant (FHL1C) from porcine skeletal muscle, Cytogenet. Cell Genet, vol.90, pp.106-114, 2000.

A. E. Pen, A novel single nucleotide splice site mutation in FHL1 confirms an Emery-Dreifuss plus phenotype with pulmonary artery hypoplasia and facial dysmorphology, Eur. J. Med. Genet, vol.58, pp.222-229, 2015.

K. K. Chan, Molecular cloning and characterization of FHL2, a novel LIM domain protein preferentially expressed in human heart, Gene, vol.210, pp.345-350, 1998.

T. Couderc, A mouse model for chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease, PLoS Pathog, vol.4, p.29, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01402310

G. C. Roberts, Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research, Sci. Rep, vol.7, p.14641, 2017.

D. Y. Kim, New World and Old World Alphaviruses have evolved to exploit different components of stress granules, FXR and G3BP proteins, for assembly of viral replication complexes, PLoS Pathog, vol.12, p.1005810, 2016.

J. Jose, A. B. Taylor, and R. J. Kuhn, Spatial and temporal analysis of alphavirus replication and assembly in mammalian and mosquito cells, vol.8, pp.2294-2310, 2017.

B. Götte, L. Liu, and G. M. Mcinerney, The enigmatic alphavirus non-structural protein 3 (nsP3) revealing its secrets at last, Viruses, vol.10, p.105, 2018.

C. D. Meshram, Multiple host factors interact with the hypervariable domain of chikungunya virus nsP3 and determine viral replication in cell-specific mode, J. Virol, vol.92, pp.838-856, 2018.

M. Mutso, Mutation of CD2AP and SH3KBP1 binding motif in alphavirus nsP3 hypervariable domain results in attenuated virus, Viruses, vol.10, p.226, 2018.

F. E. Scholte, Stress granule components G3BP1 and G3BP2 play a proviral role early in chikungunya virus replication, J. Virol, vol.89, pp.4457-4469, 2015.

J. Schessl, Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy, J. Clin. Invest, vol.118, pp.904-912, 2008.

G. Bonne, F. Leturcq, . Ben, and M. P. Adam, , 1993.

, Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

F. Medina, Dengue virus: isolation, propagation, quantification, and storage, Curr. Protoc. Microbiol, vol.15, 2012.

L. Meertens, The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry, Cell Host Microbe, vol.12, pp.544-557, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01110072

O. Shalem, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, vol.343, pp.84-87, 2014.

W. Li, MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens, Genome Biol, vol.15, p.554, 2014.

J. Joung, Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening, Nat. Protoc, vol.12, pp.828-863, 2017.

J. Pellet, ViralORFeome: an integrated database to generate a versatile collection of viral ORFs, Nucleic Acids Res, vol.38, pp.371-378, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00455342

S. Gläsker, Virus replicon particle based chikungunya virus neutralization assay using Gaussia luciferase as readout, Virol. J, vol.10, p.235, 2013.

B. M. Kümmerer, K. Grywna, S. Gläsker, J. Wieseler, and C. Drosten, Construction of an infectious chikungunya virus cDNA clone and stable insertion of mCherry reporter genes at two different sites, J. Gen. Virol, vol.93, 1991.

N. E. Plaskon, Z. N. Adelman, and K. M. Myles, Accurate strand-specific quantification of viral RNA, PLoS ONE, vol.4, p.7468, 2009.

A. A. Domenighetti, Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice, Hum. Mol. Genet, vol.23, pp.209-225, 2014.