V. D'andrea, S. Guarino, D. Matteo, F. M. , M. Saccà et al., Cancer stem cells in surgery, Gastroenterol, vol.35, pp.2603-2611, 2013.

Z. Li, CD133: a stem cell biomarker and beyond, Exp Hematol Oncol, vol.2, p.17, 2013.

K. Tabu, K. Sasai, T. Kimura, L. Wang, E. Aoyanagi et al., Promoter hypomethylation regulates CD133 expression in human gliomas, Cell Res, vol.18, pp.1037-1046, 2008.

C. A. Fargeas, W. B. Huttner, and D. Corbeil, Nomenclature of prominin-1 (CD133) splice variants -an update, Tissue Antigens, vol.69, pp.602-606, 2007.

Y. Yu, A. Flint, E. L. Dvorin, and J. Bischoff, AC133-2, a novel isoform of human AC133 stem cell antigen, J Biol Chem, vol.277, pp.20711-20716, 2002.

E. Irollo and G. Pirozzi, CD133: to be or not to be, is this the real question?, Am J Transl Res, vol.5, pp.563-581, 2013.

A. M. Friel, L. Zhang, M. D. Curley, V. A. Therrien, P. A. Sergent et al., Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells, Reprod Biol Endocrinol, vol.8, p.147, 2010.

Y. Yan, X. Zuo, and D. Wei, Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target, Stem Cells Transl Med, vol.4, pp.1033-1043, 2015.

C. Chen, S. Zhao, A. Karnad, and J. W. Freeman, The biology and role of CD44 in cancer progression: therapeutic implications, J Hematol Oncol, vol.11, p.64, 2018.

P. Xia and X. Y. Xu, Prognostic significance of CD44 in human colon cancer and gastric cancer: Evidence from bioinformatic analyses, Oncotarget, vol.7, pp.45538-45546, 2016.

M. Todaro, M. Gaggianesi, V. Catalano, A. Benfante, F. Iovino et al., CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis, Cell Stem Cell, vol.14, pp.342-356, 2014.

D. W. Eom, S. M. Hong, G. Kim, Y. K. Bae, K. T. Jang et al., Prognostic Significance of CD44v6, CD133, CD166, and ALDH1 Expression in Small Intestinal Adenocarcinoma, Appl Immunohistochem Mol Morphol, vol.23, pp.682-688, 2015.

J. Zeilstra, S. P. Joosten, H. Van-andel, C. Tolg, A. Berns et al., Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling, Oncogene, vol.33, pp.665-670, 2014.

I. Müller, F. Wischnewski, K. Pantel, and H. Schwarzenbach, Promoter-and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by methyl-CpG binding proteins and histone modifications, BMC Cancer, vol.10, p.297, 2010.

V. Saint-andré, E. Batsché, C. Rachez, and C. Muchardt, Histone H3 lysine 9 trimethylation and HP1? favor inclusion of alternative exons, Nat Struct Mol Biol, vol.18, pp.337-344, 2011.

U. H. Weidle, D. Eggle, S. Klostermann, and G. W. Swart, ALCAM/CD166: cancer-related issues, Cancer Genomics Proteomics, vol.7, pp.231-243, 2010.

P. Dalerba, S. J. Dylla, I. K. Park, R. Liu, X. Wang et al., Phenotypic characterization of human colorectal cancer stem cells, Proc Natl Acad Sci, vol.104, pp.10158-10163, 2007.

K. Kemper, C. Grandela, and J. P. Medema, Molecular identification and targeting of colorectal cancer stem cells, Oncotarget, vol.1, pp.387-395, 2010.

K. Ikeda and T. Quertermous, Molecular isolation and characterization of a soluble isoform of activated leukocyte cell adhesion molecule that modulates endothelial cell function, J Biol Chem, vol.279, pp.55315-55323, 2004.

J. A. King, F. Tan, F. Mbeunkui, Z. Chambers, S. Cantrell et al., Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer, Mol Cancer, vol.9, p.266, 2010.

S. H. Wei, R. Brown, and T. H. Huang, Aberrant DNA methylation in ovarian cancer: is there an epigenetic predisposition to drug response?, Ann N Y Acad Sci, vol.983, pp.243-250, 2003.

M. Baretti and N. S. Azad, The role of epigenetic therapies in colorectal cancer, Curr Probl Cancer, vol.42, pp.530-547, 2018.

N. Azad, C. A. Zahnow, C. M. Rudin, and S. B. Baylin, The future of epigenetic therapy in solid tumours--lessons from the past, Nat Rev Clin Oncol, vol.10, pp.256-266, 2013.

N. Mcgranahan and C. Swanton, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution, Cancer Cell, vol.27, pp.15-26, 2015.

S. Franco, K. Szczesna, M. S. Iliou, M. Al-qahtani, A. Mobasheri et al., In vitro models of cancer stem cells and clinical applications, BMC Cancer, vol.16, p.738, 2016.

N. Ahuja, H. Easwaran, and S. B. Baylin, Harnessing the potential of epigenetic therapy to target solid tumors, J Clin Invest, vol.124, pp.56-63, 2014.

R. Brown, E. Curry, L. Magnani, C. S. Wilhelm-benartzi, and J. Borley, Poised epigenetic states and acquired drug resistance in cancer, Nat Rev Cancer, vol.14, pp.747-753, 2014.

A. Sharma, R. Vatapalli, E. Abdelfatah, W. Mcmahon, K. Kerner et al., Hypomethylating agents synergize with irinotecan to improve response to chemotherapy in colorectal cancer cells, PLoS One, vol.12, p.176139, 2017.

M. Mao, F. Tian, J. M. Mariadason, C. C. Tsao, R. Lemos et al., Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents, Clin Cancer Res, vol.19, pp.657-667, 2013.

T. H. Huang, S. Y. Wu, Y. J. Huang, P. L. Wei, A. T. Wu et al., The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorigenesis and colon cancer stem-like cells, Am J Cancer Res, vol.7, pp.1227-1237, 2017.

L. Pelosof, S. Yerram, T. Armstrong, N. Chu, L. Danilova et al., GPX3 promoter methylation predicts platinum sensitivity in colorectal cancer, Epigenetics, vol.12, pp.540-550, 2017.

S. V. Vasaikar, P. Straub, J. Wang, and B. Zhang, LinkedOmics: analyzing multi-omics data within and across 32 cancer types, Nucleic Acids Res, vol.46, pp.956-963, 2018.

M. Pérez-salvia and M. Esteller, Bromodomain inhibitors and cancer therapy: From structures to applications, Epigenetics, vol.12, pp.323-339, 2017.

R. Aguirre-gamboa, H. Gomez-rueda, E. Martínez-ledesma, A. Martínez-torteya, R. Chacolla-huaringa et al., SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis, PLoS One, vol.8, p.74250, 2013.

N. S. Azad, A. El-khoueiry, J. Yin, A. L. Oberg, P. Flynn et al., Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: a phase 2 consortium/stand up 2 cancer study, Oncotarget, vol.8, pp.35326-35338, 2017.

J. Bauman, C. Verschraegen, S. Belinsky, C. Muller, T. Rutledge et al., A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies, Cancer Chemother Pharmacol, vol.69, pp.547-554, 2012.

M. J. Overman, V. Morris, H. Moinova, G. Manyam, J. Ensor et al., Phase I/II study of azacitidine and capecitabine/oxaliplatin (CAPOX) in refractory CIMP-high metastatic colorectal cancer: evaluation of circulating methylated vimentin, Oncotarget, vol.7, pp.67495-67506, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02298775

G. Schwartsmann, H. Schunemann, C. N. Gorini, A. F. Filho, C. Garbino et al., A phase I trial of cisplatin plus decitabine, a new DNA-hypomethylating agent, in patients with advanced solid tumors and a follow-up early phase II evaluation in patients with inoperable non-small cell lung cancer, Invest New Drugs, vol.18, pp.83-91, 2000.

K. Appleton, H. J. Mackay, J. I. Plumb, J. A. Mccormick, C. Strathdee et al., Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors, J Clin Oncol, vol.25, pp.4603-4609, 2007.

I. Garrido-laguna, K. A. Mcgregor, M. Wade, J. Weis, W. Gilcrease et al., A phase I/II study of decitabine in combination with panitumumab in patients with wild-type (wt), KRAS metastatic colorectal cancer. Invest New Drugs, vol.31, pp.1257-1264, 2013.

S. Toden, H. M. Tran, O. A. Tovar-camargo, Y. Okugawa, and A. Goel, Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer, Oncotarget, vol.7, pp.16158-16171, 2016.

P. M. Yang, Y. T. Lin, C. T. Shun, S. H. Lin, T. T. Wei et al., Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress, Sci Rep, vol.3, p.3219, 2013.

M. Feldman and D. Levy, Peptide inhibition of the SETD6 methyltransferase catalytic activity, Oncotarget, vol.9, pp.4875-4885, 2017.

H. Ü. Kaniskan, M. S. Eram, K. Zhao, M. M. Szewczyk, X. Yang et al., Discovery of Potent and Selective Allosteric Inhibitors of Protein Arginine Methyltransferase 3 (PRMT3), J Med Chem, vol.61, pp.1204-1217, 2018.

H. Wu, W. Zheng, M. S. Eram, M. Vhuiyan, A. Dong et al., Structural basis of arginine asymmetrical dimethylation by PRMT6, Biochem J, vol.473, pp.3049-3063, 2016.

F. Chimenti, B. Bizzarri, E. Maccioni, D. Secci, A. Bolasco et al., A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone, J Med Chem, vol.52, pp.530-536, 2009.

F. Aquea, T. Timmermann, and A. Herrera-vásquez, Chemical inhibition of the histone acetyltransferase activity in Arabidopsis thaliana, Biochem Biophys Res Commun, vol.483, pp.664-668, 2017.

J. J. Wheler, F. Janku, G. S. Falchook, T. L. Jackson, S. Fu et al., Phase I study of anti-VEGF monoclonal antibody bevacizumab and histone deacetylase inhibitor valproic acid in patients with advanced cancers, Cancer Chemother Pharmacol, vol.73, pp.495-501, 2014.

P. Münster, D. Marchion, E. Bicaku, M. Schmitt, J. H. Lee et al., Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study, J Clin Oncol, vol.25, pp.1979-1985, 2007.

R. Pili, B. Salumbides, M. Zhao, S. Altiok, D. Qian et al., Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours, Br J Cancer, vol.106, pp.77-84, 2012.

N. Ngamphaiboon, G. K. Dy, W. W. Ma, Y. Zhao, T. Reungwetwattana et al., A phase I study of the histone deacetylase (HDAC) inhibitor entinostat, in combination with sorafenib in patients with advanced solid tumors, Invest New Drugs, vol.33, pp.225-232, 2015.

J. H. Strickler, A. N. Starodub, J. Jia, K. L. Meadows, A. B. Nixon et al., Phase I study of bevacizumab, everolimus, and panobinostat (LBH-589) in advanced solid tumors, Cancer Chemother Pharmacol, vol.70, pp.251-258, 2012.

A. H. Ree, S. Dueland, S. Folkvord, K. H. Hole, T. Seierstad et al.,

. Vorinostat and . Inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, Lancet Oncol, vol.11, pp.459-464, 2010.

P. M. Wilson, A. El-khoueiry, S. Iqbal, W. Fazzone, M. J. Labonte et al., A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy, Cancer Chemother Pharmacol, vol.65, pp.979-988, 2010.

M. G. Fakih, A. Groman, J. Mcmahon, G. Wilding, and J. R. Muindi, A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer, Cancer Chemother Pharmacol, vol.69, pp.743-751, 2012.

P. N. Munster, D. Marchion, S. Thomas, M. Egorin, S. Minton et al., Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker, Br J Cancer, vol.101, pp.1044-1050, 2009.

D. A. Deming, J. Ninan, H. H. Bailey, J. M. Kolesar, J. Eickhoff et al., A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors, Invest New Drugs, vol.32, pp.323-329, 2014.

R. P. Whitehead, C. Rankin, P. M. Hoff, P. J. Gold, K. G. Billingsley et al., Phase II trial of romidepsin (NSC-630176) in previously treated colorectal cancer patients with advanced disease: a Southwest Oncology Group study (S0336), Invest New Drugs, vol.27, pp.469-475, 2009.

L. R. Pauer, J. Olivares, C. Cunningham, A. Williams, W. Grove et al., Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors, Cancer Invest, vol.22, pp.886-896, 2004.

K. R. Patel, E. Scott, V. A. Brown, A. J. Gescher, W. P. Steward et al., Clinical trials of resveratrol. Ann N Y Acad Sci, vol.1215, pp.161-169, 2011.

D. Rotili, D. Tarantino, A. Nebbioso, C. Paolini, C. Huidobro et al., Discovery of salermide-related sirtuin inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells, J Med Chem, vol.55, pp.10937-10947, 2012.

H. Lin, Q. Li, Q. Li, J. Zhu, K. Gu et al., Small molecule KDM4s inhibitors as anti-cancer agents, J Enzyme Inhib Med Chem, vol.33, pp.777-793, 2018.

G. Bar-sela, R. Epelbaum, and M. Schaffer, Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications, Curr Med Chem, vol.17, pp.190-197, 2010.

J. Wang, C. Chen, S. Wang, Y. Zhang, P. Yin et al., Bufalin Inhibits HCT116 Colon Cancer Cells and Its Orthotopic Xenograft Tumor in Mice Model through Genes Related to Apoptotic and PTEN/AKT Pathways, Gastroenterol Res Pract, p.457193, 2015.

H. Wapenaar and F. J. Dekker, Histone acetyltransferases: challenges in targeting bi-substrate enzymes, Clin Epigenetics, vol.8, p.59, 2016.

D. Fogelman, A. Cubillo, P. García-alfonso, M. Mirón, J. Nemunaitis et al., Randomized, double-blind, phase two study of ruxolitinib plus regorafenib in patients with relapsed/refractory metastatic colorectal cancer, Cancer Med, vol.7, pp.5382-5393, 2018.

Y. Y. Chu-farseeva, N. Mustafa, A. Poulsen, E. C. Tan, J. Yen et al., Design and synthesis of potent dual inhibitors of JAK2 and HDAC based on fusing the pharmacophores of XL019 and vorinostat, Eur J Med Chem, vol.158, pp.593-619, 2018.

K. A. Kobza, K. Chaiseeda, G. Sarath, J. M. Takacs, and J. Zempleni, Biotinyl-methyl 4-(amidomethyl)benzoate is a competitive inhibitor of human biotinidase, J Nutr Biochem, vol.19, pp.826-832, 2008.

M. Moustakim, P. G. Clark, L. Trulli, F. De-arriba, A. L. Ehebauer et al., Discovery of a PCAF Bromodomain Chemical Probe, Angew Chem Int Ed Engl, vol.56, pp.827-831, 2017.

Y. He, S. Selvaraju, M. L. Curtin, C. G. Jakob, H. Zhu et al., The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex, Nat Chem Biol, vol.13, pp.389-395, 2017.