S. Ollila and T. P. Mäkelä, The tumor suppressor kinase LKB1: lessons from mouse models, J Mol Cell Biol, vol.3, issue.6, pp.330-340, 2011.

S. E. Korsse, Identification of molecular alterations in gastrointestinal carcinomas and dysplastic hamartomas in Peutz-Jeghers syndrome, Carcinogenesis, vol.34, issue.7, pp.1611-1619, 2013.

W. W. De-leng, Peutz-Jeghers syndrome polyps are polyclonal with expanded progenitor cell compartment, Gut, vol.56, issue.10, pp.1475-1476, 2007.

D. J. Rossi, Induction of cyclooxygenase-2 in a mouse model of Peutz-Jeghers polyposis, Proc Natl Acad Sci U S A, vol.99, issue.19, pp.12327-12332, 2002.

M. Jansen, Mucosal prolapse in the pathogenesis of Peutz-Jeghers polyposis, Gut, vol.55, issue.1, pp.1-5, 2006.

P. Katajisto, LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis, Nat Genet, vol.40, issue.4, pp.455-459, 2008.

S. Zac-varghese, The Peutz-Jeghers kinase LKB1 suppresses polyp growth from intestinal cells of a proglucagon-expressing lineage in mice, Dis Model Mech, vol.7, issue.11, pp.1275-1286, 2014.

H. Ji, LKB1 modulates lung cancer differentiation and metastasis, Nature, vol.448, issue.7155, pp.807-810, 2007.

P. S. Tanwar, T. Kaneko-tarui, L. Zhang, Y. Tanaka, C. P. Crum et al., Stromal liver kinase B1 [STK11] signaling loss induces oviductal adenomas and endometrial cancer by activating mammalian Target of Rapamycin Complex 1, PLoS Genet, vol.8, issue.8, p.1002906, 2012.

P. Katajisto, The LKB1 tumor suppressor kinase in human disease, Biochim Biophys Acta, vol.1775, issue.1, pp.63-75, 2007.

D. B. Shackelford and R. J. Shaw, The LKB1-AMPK pathway: metabolism and growth control in tumour suppression, Nat Rev Cancer, vol.9, issue.8, pp.563-575, 2009.

T. Chen, Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle, J Appl Physiol, vol.120, issue.8, pp.876-888, 2016.

Z. Liu, W. Zhang, M. Zhang, H. Zhu, C. Moriasi et al., Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor ?B (NF-?B) activation in macrophages, J Biol Chem, vol.290, issue.4, pp.2312-2320, 2015.

N. J. Maciver, The liver kinase B1 is a central regulator of T cell development, activation, and metabolism, J Immunol, vol.187, issue.8, pp.4187-4198, 2011.

S. Koyama, STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment, Cancer Res, vol.76, issue.5, pp.999-1008, 2016.

L. Udd, Suppression of Peutz-Jeghers polyposis by inhibition of cyclooxygenase-2. Gastroenterology, vol.127, pp.1030-1037, 2004.

A. Ylikorkala, Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice, Science, vol.293, issue.5533, pp.1323-1326, 2001.

J. Y. Tse, Peutz-Jeghers syndrome: a critical look at colonic Peutz-Jeghers polyps, Mod Pathol, vol.26, issue.9, pp.1235-1240, 2013.

P. A. Adegboyega, R. C. Mifflin, J. F. Dimari, J. I. Saada, and D. W. Powell, Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps, Arch Pathol Lab Med, vol.126, issue.7, pp.829-836, 2002.

H. Sugimoto, T. M. Mundel, M. W. Kieran, and R. Kalluri, Identification of fibroblast heterogeneity in the tumor microenvironment, Cancer Biol Ther, vol.5, issue.12, pp.1640-1646, 2006.

L. Udd, P. Katajisto, M. Kyyrönen, A. P. Ristimäki, and T. P. Mäkelä, Impaired gastric gland differentiation in Peutz-Jeghers syndrome, Am J Pathol, vol.176, issue.5, pp.2467-2476, 2010.

J. M. Lizcano, LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, EMBO J, vol.23, issue.4, pp.833-843, 2004.

D. B. Shackelford, mTOR and HIF-1 alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome, Proc Natl Acad Sci, vol.106, issue.27, pp.11137-11142, 2009.

B. Viollet, Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models, Biochem Soc Trans, vol.31, pp.216-219, 2003.

C. Lai, J. Robinson, S. Clark, G. Stamp, R. Poulsom et al., Elevation of WNT5A expression in polyp formation in Lkb1 +/-mice and Peutz-Jeghers syndrome, J Pathol, vol.223, issue.5, pp.584-592, 2011.

K. Vaahtomeri, Lkb1 is required for TGF beta-mediated myofibroblast differentiation, J Cell Sci, vol.121, pp.3531-3540, 2008.

R. Scherz-shouval, The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy, Cell, vol.158, issue.3, pp.564-578, 2014.

T. L. Putoczki and M. Ernst, IL-11 signaling as a therapeutic target for cancer, Immunotherapy, vol.7, issue.4, pp.441-453, 2015.

M. Ernst and T. L. Putoczki, Molecular pathways: IL11 as a tumor-promoting cytokine-translational implications for cancers, Clin Cancer Res. jci.org, vol.128, issue.1, pp.5579-5588, 2014.

R. Shaco-levy, Morphologic characterization of hamartomatous gastrointestinal polyps in Cowden syndrome, Peutz-Jeghers syndrome, and juvenile polyposis syndrome, Hum Pathol, vol.49, pp.39-48, 2016.

C. Garbers and J. Scheller, Interleukin-6 and interleukin-11: same same but different, Biol Chem, vol.394, issue.9, pp.1145-1161, 2013.

M. Ernst and T. L. Putoczki, Stat3: linking inflammation to (gastrointestinal) tumourigenesis, Clin Exp Pharmacol Physiol, vol.39, issue.8, pp.711-718, 2012.

G. Pickert, STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing, J Exp Med, vol.206, issue.7, pp.1465-1472, 2009.

M. Howlett, The interleukin-6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development, Gastroenterology, vol.136, issue.3, pp.967-977, 2009.

R. Roskoski, Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases, Pharmacol Res, vol.111, pp.784-803, 2016.

A. Quintás-cardama, Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms, Blood, vol.115, issue.15, pp.3109-3117, 2010.

J. M. O'sullivan and C. N. Harrison, JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms, Mol Cell Endocrinol, vol.451, pp.71-79, 2017.

S. Verstovsek, Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial, J Hematol Oncol, vol.10, issue.1, p.55, 2017.

M. Tripathi, S. Billet, and N. A. Bhowmick, Understanding the role of stromal fibroblasts in cancer progression, Cell Adh Migr, vol.6, issue.3, pp.231-235, 2012.

L. Rønnov-jessen and M. J. Bissell, Breast cancer by proxy: can the microenvironment be both the cause and consequence?, Trends Mol Med, vol.15, issue.1, pp.5-13, 2009.

B. Y. Shorning, D. Griffiths, and A. R. Clarke, Lkb1 and Pten synergise to suppress mTOR-mediated tumorigenesis and epithelial-mesenchymal transition in the mouse bladder, PLoS One, vol.6, issue.1, p.16209, 2011.

D. Langeveld, SMAD4 immunohistochemistry reflects genetic status in juvenile polyposis syndrome, Clin Cancer Res, vol.16, issue.16, pp.4126-4134, 2010.

K. Woodford-richens, Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium

, Cancer Res, vol.60, issue.9, pp.2477-2482, 2000.

P. Alberici, Smad4 haploinsufficiency: a matter of dosage, Pathogenetics, vol.1, issue.1, p.2, 2008.

X. C. He, PTEN-deficient intestinal stem cells initiate intestinal polyposis, Nat Genet, vol.39, issue.2, pp.189-198, 2007.

V. Marsh-durban, M. Jansen, E. J. Davies, F. H. Morsink, G. J. Offerhaus et al., Epithelial-specific loss of PTEN results in colorectal juvenile polyp formation and invasive cancer, Am J Pathol, vol.184, issue.1, pp.86-91, 2014.

S. Li, Mesenchymal-epithelial interactions involving epiregulin in tuberous sclerosis complex hamartomas, Proc Natl Acad Sci U S A, vol.105, issue.9, pp.3539-3544, 2008.

B. Yu, Stromal fibroblasts in the microenvironment of gastric carcinomas promote tumor metastasis via upregulating TAGLN expression, BMC Cell Biol, vol.14, p.17, 2013.

R. Kalluri and M. Zeisberg, Fibroblasts in cancer, Nat Rev Cancer, vol.6, issue.5, pp.392-401, 2006.

D. Öhlund, Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer, J Exp Med, vol.214, issue.3, pp.579-596, 2017.

N. C. Tebbutt, Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice, Nat Med, vol.8, issue.10, pp.1089-1097, 2002.

M. Howlett, Differential regulation of gastric tumor growth by cytokines that signal exclusively through the coreceptor gp130, Gastroenterology, vol.129, issue.3, pp.1005-1018, 2005.

M. Ernst, STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice, J Clin Invest, vol.118, issue.5, pp.1727-1738, 2008.

T. L. Putoczki, Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically, Cancer Cell, vol.24, issue.2, pp.257-271, 2013.

J. Robinson, C. Lai, A. Martin, E. Nye, I. Tomlinson et al., Oral rapamycin reduces tumour burden and vascularization in Lkb1(+/-) mice, J Pathol, vol.219, issue.1, pp.35-40, 2009.

A. J. Trimboli, Direct evidence for epithelial-mesenchymal transitions in breast cancer, Cancer Res, vol.68, issue.3, pp.937-945, 2008.

K. Yu, Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth, Development, vol.130, issue.13, pp.3063-3074, 2003.

N. Barker, Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.449, issue.7165, pp.1003-1007, 2007.

N. Bardeesy, Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation, Nature, vol.419, issue.6903, pp.162-167, 2002.

P. Soriano, Generalized lacZ expression with the ROSA26 Cre reporter strain, Nat Genet, vol.21, issue.1, pp.70-71, 1999.

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global double-fluorescent Cre reporter mouse, Genesis, vol.45, issue.9, pp.593-605, 2007.

H. J. Snippert, Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells, Cell, vol.143, issue.1, pp.134-144, 2010.

L. Madisen, A robust and high-throughput Cre reporting and characterization system for the whole mouse brain, Nat Neurosci, vol.13, issue.1, pp.133-140, 2010.

S. B. Jørgensen, Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle, J Biol Chem, vol.279, issue.2, pp.1070-1079, 2004.

B. Viollet, The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity, J Clin Invest, vol.111, issue.1, pp.91-98, 2003.

I. Iacobucci, Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia, Cancer Cell, vol.29, issue.2, pp.186-200, 2016.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, issue.1, pp.15-21, 2013.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, issue.12, p.550, 2014.

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U S A, vol.102, issue.43, pp.15545-15550, 2005.

A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo et al., Molecular signatures database (MSigDB) 3.0. Bioinformatics, vol.27, pp.1739-1740, 2011.

T. Sato, Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, vol.459, issue.7244, pp.262-265, 2009.

M. M. Mahe, Establishment of Gastrointestinal Epithelial Organoids, Curr Protoc Mouse Biol, vol.3, issue.4, pp.217-240, 2013.

M. Quante, Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth, Cancer Cell, vol.19, issue.2, pp.257-272, 2011.