Q. T. Ostrom, H. Gittleman, P. Liao, T. Vecchione-koval, Y. Wolinsky et al., CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014, Neuro Oncol, vol.19, pp.1-88, 2017.

K. W. Liu, K. W. Pajtler, B. C. Worst, S. M. Pfister, and R. J. Wechsler-reya, Molecular mechanisms and therapeutic targets in pediatric brain tumors, Sci. Signal, vol.10, 2017.

M. D. Taylor, P. A. Northcott, A. Korshunov, M. Remke, Y. J. Cho et al., Molecular subgroups of medulloblastoma: The current consensus, Acta Neuropathol, vol.123, pp.465-472, 2012.

P. A. Northcott, D. T. Jones, M. Kool, G. W. Robinson, R. J. Gilbertson et al., The end of the beginning, Nat. Rev. Cancer, vol.12, pp.818-834, 2012.

P. A. Northcott, I. Buchhalter, A. S. Morrissy, V. Hovestadt, J. Weischenfeldt et al., The whole-genome landscape of medulloblastoma subtypes, Nature, vol.547, pp.311-317, 2017.

C. Y. Lin, S. Erkek, Y. Tong, L. Yin, A. J. Federation et al., Active medulloblastoma enhancers reveal subgroup-specific cellular origins, Nature, vol.530, pp.57-62, 2016.

F. M. Cavalli, M. Remke, L. Rampasek, J. Peacock, D. J. Shih et al., Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, vol.31, pp.737-754, 2017.

R. K. Mulhern, T. E. Merchant, A. Gajjar, W. E. Reddick, and L. E. Kun, Late neurocognitive sequelae in survivors of brain tumours in childhood, Lancet Oncol, vol.5, pp.399-408, 2004.

S. J. Laughton, T. E. Merchant, C. A. Sklar, L. E. Kun, M. Fouladi et al., Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial, J. Clin. Oncol, vol.26, pp.1112-1118, 2008.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: A nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol, vol.13, pp.251-262, 2012.

D. G. Hardie, B. E. Schaffer, and A. Brunet, AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs, Trends Cell Biol, vol.26, pp.190-201, 2016.

, Int. J. Mol. Sci, vol.19, p.3287, 2018.

J. Cheng, T. Zhang, H. Ji, K. Tao, J. Guo et al., Functional characterization of AMP-activated protein kinase signaling in tumorigenesis, Biochim. Biophys. Acta, vol.1866, pp.232-251, 2016.

J. Liang and G. B. Mills, AMPK: A contextual oncogene or tumor suppressor? Cancer Res, vol.73, pp.2929-2935, 2013.

G. Zadra, J. L. Batista, and M. Loda, Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies, Mol. Cancer Res, vol.13, pp.1059-1072, 2015.

B. Dasgupta and R. R. Chhipa, Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer, Trends Pharmacol. Sci, vol.37, pp.192-206, 2016.

S. A. Hawley, J. Boudeau, J. L. Reid, K. J. Mustard, L. Udd et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, J. Biol, vol.2, p.28, 2003.

A. Woods, S. R. Johnstone, K. Dickerson, F. C. Leiper, L. G. Fryer et al., LKB1 is the upstream kinase in the AMP-activated protein kinase cascade, Curr. Biol, vol.13, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00390855

R. J. Shaw, M. Kosmatka, N. Bardeesy, R. L. Hurley, L. A. Witters et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proc. Natl. Acad. Sci, vol.101, pp.3329-3335, 2004.

D. B. Shackelford and R. J. Shaw, The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression, Nat. Rev. Cancer, vol.9, pp.563-575, 2009.

B. Faubert, G. Boily, S. Izreig, T. Griss, B. Samborska et al., AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo, Cell Metab, vol.17, pp.113-124, 2013.

K. N. Phoenix, C. V. Devarakonda, M. M. Fox, L. E. Stevens, and K. P. Claffey, AMPKalpha2 Suppresses Murine Embryonic Fibroblast Transformation and Tumorigenesis, Genes Cancer, vol.3, pp.51-62, 2012.

K. R. Laderoute, K. Amin, J. M. Calaoagan, M. Knapp, T. Le et al., 5 -AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments, Mol. Cell. Biol, vol.26, pp.5336-5347, 2006.

S. M. Jeon, N. S. Chandel, and N. Hay, AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress, Nature, vol.485, pp.661-665, 2012.

M. Rios, M. Foretz, B. Viollet, A. Prieto, M. Fraga et al., AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors, Cancer Res, vol.73, pp.2628-2638, 2013.

S. K. Hindupur, S. A. Balaji, M. Saxena, S. Pandey, G. S. Sravan et al., Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells, Breast Cancer Res, vol.16, 2014.

Y. Saito, R. H. Chapple, A. Lin, A. Kitano, and D. Nakada, AMPK Protects Leukemia-Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow, Cell Stem Cell, vol.17, pp.585-596, 2015.

R. R. Chhipa, Q. Fan, J. Anderson, R. Muraleedharan, Y. Huang et al., AMP kinase promotes glioblastoma bioenergetics and tumour growth, Nat. Cell Biol, vol.20, pp.823-835, 2018.

Y. H. Li, J. Luo, Y. Y. Mosley, V. E. Hedrick, L. N. Paul et al., AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma, Cell Rep, vol.12, pp.599-609, 2015.

R. Zhang, S. Y. Huang, K. Ka-wai-li, Y. H. Li, W. H. Hsu et al., Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through beta-TrCP-mediated proteasome degradation, Oncotarget, vol.8, pp.49869-49881, 2017.

D. Magno, L. Basile, A. Coni, S. Manni, S. Sdruscia et al., The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint, Oncotarget, vol.7, pp.9538-9549, 2016.

T. R. Gershon, A. J. Crowther, A. Tikunov, I. Garcia, R. Annis et al., Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma

K. Tech and T. R. Gershon, Energy metabolism in neurodevelopment and medulloblastoma, Transl. Pediatr, vol.4, pp.12-19, 2015.

S. Y. Huang, S. K. Chen, and J. Y. Yang, Activation of AMPK inhibits medulloblastoma cell growth and Gli1 activity, Cancer Rep. Rev, 2017.

D. D'amico, L. Antonucci, L. Di-magno, S. Coni, G. Sdruscia et al., Non-canonical Hedgehog/AMPK-Mediated Control of Polyamine Metabolism Supports Neuronal and Medulloblastoma Cell Growth. Dev. Cell, vol.35, pp.21-35, 2015.

L. E. Michael, B. A. Westerman, A. N. Ermilov, A. Wang, J. Ferris et al., Bmi1 is required for Hedgehog pathway-driven medulloblastoma expansion, Neoplasia, vol.10, pp.1343-1349, 2008.

T. Xu, H. Zhang, S. S. Park, S. Venneti, R. Kuick et al., Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis, vol.19, pp.216-225, 2017.

B. Viollet, F. Andreelli, S. B. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity, J. Clin. Investig, vol.111, pp.91-98, 2003.

A. De-luca, V. Cerrato, E. Fuca, E. Parmigiani, A. Buffo et al., Sonic hedgehog patterning during cerebellar development, Cell. Mol. Life Sci, vol.73, pp.291-303, 2016.

S. B. Jorgensen, J. T. Treebak, B. Viollet, P. Schjerling, S. Vaulont et al., Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.331-339, 2007.

D. Carling, V. A. Zammit, and D. G. Hardie, A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis, FEBS Lett, vol.223, pp.217-222, 1987.

M. D. Fullerton, S. Galic, K. Marcinko, S. Sikkema, T. Pulinilkunnil et al., Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin, Nat. Med, vol.19, pp.1649-1654, 2013.

C. Wang, J. Ma, N. Zhang, Q. Yang, Y. Jin et al., The acetyl-CoA carboxylase enzyme: A target for cancer therapy?, Expert Rev. Anticancer Ther, vol.15, pp.667-676, 2015.

P. A. Northcott, D. J. Shih, J. Peacock, L. Garzia, A. S. Morrissy et al., Subgroup-specific structural variation across 1000 medulloblastoma genomes, Nature, vol.488, pp.49-56, 2012.

A. Ashworth, C. J. Lord, and J. S. Reis-filho, Genetic interactions in cancer progression and treatment, Cell, vol.145, pp.30-38, 2011.

M. M. Fox, K. N. Phoenix, S. G. Kopsiaftis, and K. P. Claffey, AMP-Activated Protein Kinase alpha 2 Isoform Suppression in Primary Breast Cancer Alters AMPK Growth Control and Apoptotic Signaling, Genes Cancer, vol.4, pp.3-14, 2013.

I. K. Vila, Y. Yao, G. Kim, W. Xia, H. Kim et al., A UBE2O-AMPK?2 Axis That Promotes Tumor Initiation and Progression Offers Opportunities for Therapy, Cancer Cell, vol.31, pp.208-224, 2017.

L. V. Goodrich, L. Milenkovic, K. M. Higgins, and M. P. Scott, Altered neural cell fates and medulloblastoma in mouse patched mutants, Science, vol.277, pp.1109-1113, 1997.

A. R. Hallahan, J. I. Pritchard, S. Hansen, M. Benson, J. Stoeck et al., The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas, Cancer Res, vol.64, pp.7794-7800, 2004.

S. B. Jorgensen, B. Viollet, F. Andreelli, C. Frosig, J. B. Birk et al., Knockout of the alpha2 but not alpha1 5 -AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle, J. Biol. Chem, vol.279, pp.1070-1079, 2004.

B. Viollet, Y. Athea, R. Mounier, B. Guigas, E. Zarrinpashneh et al., Lessons from transgenic and knockout animals, vol.14, pp.19-44, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00367498

, Int. J. Mol. Sci, vol.19, p.3287, 2018.

F. A. Ross, C. Mackintosh, and D. G. Hardie, AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours, FEBS J, vol.283, pp.2987-3001, 2016.

S. Herzig and R. J. Shaw, AMPK: Guardian of metabolism and mitochondrial homeostasis, Nat. Rev. Mol. Cell Biol, vol.19, pp.121-135, 2018.

Z. J. Yang, T. Ellis, S. L. Markant, T. A. Read, J. D. Kessler et al., Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells, Cancer Cell, vol.14, pp.135-145, 2008.

A. M. Turnley, D. Stapleton, R. J. Mann, L. A. Witters, B. E. Kemp et al., Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system, J. Neurochem, vol.72, pp.1707-1716, 1999.

W. Lin, A. Kemper, K. D. Mccarthy, P. Pytel, J. P. Wang et al., Interferon-gamma induced medulloblastoma in the developing cerebellum, J. Neurosci, vol.24, pp.10074-10083, 2004.