U. Andersson, K. Filipsson, C. R. Abbott, A. Woods, K. Smith et al., AMP-activated protein kinase plays a role in the control of food intake, J Biol Chem, vol.279, pp.12005-12008, 2004.

B. R. Barnes, S. Marklund, T. L. Steiler, M. Walter, G. Hjalm et al., The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle, J Biol Chem, vol.279, pp.38441-38447, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01211883

D. Beiroa, M. Imbernon, R. Gallego, A. Senra, D. Herranz et al., GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK, Diabetes, vol.63, pp.3346-3358, 2014.

J. B. Birk and J. F. Wojtaszewski, Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle, J Physiol, vol.577, pp.1021-1032, 2006.

C. Canto, L. Q. Jiang, A. S. Deshmukh, C. Mataki, A. Coste et al., Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle, Cell Metab, vol.11, pp.213-219, 2010.

S. R. Costford, N. Kavaslar, N. Ahituv, S. N. Chaudhry, W. S. Schackwitz et al., Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle, PLoS One, vol.2, p.903, 2007.

G. C. Gaitanos, C. Williams, L. H. Boobis, and S. Brooks, Human muscle metabolism during intermittent maximal exercise, J Appl Physiol, vol.75, pp.712-719, 1985.

P. M. Garcia-roves, M. E. Osler, M. H. Holmstrom, and J. R. Zierath, Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle, J Biol Chem, vol.283, pp.35724-35734, 2008.

D. G. Hardie, AMPK-sensing energy while talking to other signaling pathways, Cell Metab, vol.20, pp.939-952, 2014.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat Rev Mol Cell Biol, vol.13, pp.251-262, 2012.

D. G. Hardie, B. E. Schaffer, and A. Brunet, AMPK: An energy-sensing pathway with multiple inputs and outputs, Trends Cell Biol, vol.26, pp.190-201, 2016.

T. E. Jensen, A. J. Rose, S. B. Jorgensen, N. Brandt, P. Schjerling et al., Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction, Am J Physiol Endocrinol Metab, vol.292, pp.1308-1317, 2007.

R. Kjobsted, J. T. Treebak, J. Fentz, L. Lantier, B. Viollet et al., Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner, Diabetes, vol.64, pp.2042-2055, 2015.

R. Kjobsted, N. Munk-hansen, J. B. Birk, M. Foretz, B. Viollet et al., Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK, Diabetes, vol.66, pp.598-612, 2017.

N. Kubota, W. Yano, T. Kubota, T. Yamauchi, S. Itoh et al., Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake, Cell Metab, vol.6, pp.55-68, 2007.

Y. C. Lai, S. Kviklyte, D. Vertommen, L. Lantier, M. Foretz et al., A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators, Biochem J, vol.460, pp.363-375, 2014.

L. Lantier, J. Fentz, R. Mounier, J. Leclerc, J. T. Treebak et al., AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity, Faseb J, vol.28, pp.3211-3224, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00979373

M. López, L. Varela, M. J. Vázquez, S. Rodríguez-cuenca, C. R. González et al., Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance, Nat Med, vol.16, pp.1001-1008, 2010.

P. B. Martinez-de-morentin, I. Gonzalez-garcia, L. Martins, R. Lage, D. Fernandez-mallo et al., Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK, Cell Metab, vol.20, pp.41-53, 2014.

S. L. Mcgee and M. Hargreaves, AMPK-mediated regulation of transcription in skeletal muscle, Clin Sci (Lond), vol.118, pp.507-518, 2010.

S. L. Mcgee, K. J. Mustard, D. G. Hardie, and K. Baar, Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice, J Physiol, vol.586, pp.1731-1741, 2008.

G. F. Merrill, E. J. Kurth, D. G. Hardie, and W. W. Winder, AICA riboside increases AMPactivated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am J Physiol, vol.273, pp.1107-1112, 1997.

D. Milan, J. T. Jeon, C. Looft, V. Amarger, A. Robic et al., A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle, Science, vol.288, pp.1248-1251, 2000.

Y. Minokoshi, T. Alquier, N. Furukawa, Y. B. Kim, A. Lee et al., AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, vol.428, pp.569-574, 2004.

J. Mu, J. T. Brozinick, J. Valladares, O. Bucan, M. Birnbaum et al., A role for AMPactivated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle, Mol Cell, vol.7, pp.1085-1094, 2001.

N. Musi, N. Fujii, M. F. Hirshman, I. Ekberg, S. Froberg et al., AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise, Diabetes, vol.50, pp.921-927, 2001.

H. M. O'neill, S. J. Maarbjerg, J. D. Crane, J. Jeppesen, S. B. Jorgensen et al., AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise, Proc Natl Acad Sci, vol.108, pp.16092-16097, 2011.

R. M. Reznick, H. Zong, J. Li, K. Morino, I. K. Moore et al., Agingassociated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis, Cell Metab, vol.5, pp.151-156, 2007.

E. A. Richter, L. P. Garetto, M. N. Goodman, and N. B. Ruderman, Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin, J Clin Invest, vol.69, pp.785-793, 1982.

K. Sakamoto, A. Mccarthy, D. Smith, K. A. Green, G. Hardie et al., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, Embo J, vol.24, pp.1810-1820, 2005.

J. Stockli, C. C. Meoli, N. J. Hoffman, D. J. Fazakerley, H. Pant et al., The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle, Diabetes, vol.64, pp.1914-1922, 2015.

C. B. Tanner, S. R. Madsen, D. M. Hallowell, D. M. Goring, T. M. Moore et al., Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1, Am J Physiol Endocrinol Metab, vol.305, pp.1018-1029, 2013.

D. M. Thomson, B. B. Porter, J. H. Tall, H. J. Kim, J. R. Barrow et al., Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice, Am J Physiol Endocrinol Metab, vol.292, pp.196-202, 2007.

J. T. Treebak, J. B. Birk, B. F. Hansen, G. S. Olsen, and J. F. Wojtaszewski, A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle, Am J Physiol Cell Physiol, vol.297, pp.1041-1052, 2009.

J. T. Treebak, C. Pehmoller, J. M. Kristensen, R. Kjobsted, J. B. Birk et al., Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle, J Physiol, vol.592, pp.351-375, 2014.

K. Vichaiwong, S. Purohit, D. An, T. Toyoda, N. Jessen et al., Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle, Biochem J, vol.431, pp.311-320, 2010.

A. J. Whittle, S. Carobbio, L. Martins, M. Slawik, E. Hondares et al., BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions, Cell, vol.149, pp.871-885, 2012.

W. W. Winder and D. G. Hardie, Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise, Am J Physiol, vol.270, pp.299-304, 1996.

J. F. Wojtaszewski, P. Nielsen, B. F. Hansen, E. A. Richter, and B. Kiens, Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle, J Physiol, vol.528, pp.221-226, 2000.

Y. Yang, D. Atasoy, H. H. Su, and S. M. Sternson, Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop, Cell, vol.146, pp.992-1003, 2011.

A. Yavari, C. J. Stocker, S. Ghaffari, E. T. Wargent, V. Steeples et al., Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function, vol.23, pp.821-836, 2016.

H. Zong, J. M. Ren, L. H. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proc Natl Acad Sci, vol.99, pp.15983-15987, 2002.