F. W. Booth and K. Baldwin, Exercise: Regulation and Inte-gration of Multiple Systems, Handbook of Physiology, pp.1075-1123, 1996.

B. Egan and J. R. Zierath, Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab, vol.17, pp.162-184, 2013.

M. Flück, Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli, J. Exp. Biol, vol.209, pp.2239-2248, 2006.

R. Bassel-duby and E. N. Olson, Signaling pathways in skeletal muscle remodeling, Annu. Rev. Biochem, vol.75, pp.19-37, 2006.

D. A. Hood, I. Irrcher, V. Ljubicic, J. , and A. , Coordination of metabolic plasticity in skeletal muscle, J. Exp. Biol, vol.209, pp.2265-2275, 2006.

G. C. Gaitanos, C. Williams, L. H. Boobis, and S. Brooks, Human muscle metabolism during intermittent maximal exercise, J. Appl. Physiol, vol.75, pp.712-719, 1993.

G. J. Gowans and D. G. Hardie, AMPK: a cellular energy sensor primarily regulated by AMP, Biochem. Soc. Trans, vol.42, pp.71-75, 2014.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol, vol.13, pp.251-262, 2012.

G. F. Merrill, E. J. Kurth, D. G. Hardie, and W. W. Winder, AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am. J. Physiol, vol.273, pp.1107-1112, 1997.

S. B. Jørgensen, J. N. Nielsen, J. B. Birk, G. S. Olsen, B. Viollet et al., The a2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading, Diabetes, vol.53, pp.3074-3081, 2004.

D. R. Bolster, S. J. Crozier, S. R. Kimball, J. , and L. S. , AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling, J. Biol. Chem, vol.277, pp.23977-23980, 2002.

V. Ljubicic, P. Miura, M. Burt, L. Boudreault, S. Khogali et al., Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle, Hum. Mol. Genet, vol.20, pp.3478-3493, 2011.

R. Bergeron, J. M. Ren, K. S. Cadman, I. K. Moore, P. Perret et al., Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis, Am. J. Physiol. Endocrinol. Metab, vol.281, pp.1340-1346, 2001.

W. W. Winder, B. F. Holmes, D. S. Rubink, E. B. Jensen, M. Chen et al., Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle, J. Appl. Physiol, vol.88, pp.2219-2226, 2000.

H. Zong, J. M. Ren, L. H. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proc. Natl. Acad. Sci. USA, vol.99, pp.15983-15987, 2002.

W. W. Winder, D. G. Hardie, K. J. Mustard, L. J. Greenwood, B. E. Paxton et al., Long-term regulation of AMP-activated protein kinase and acetyl-CoA carboxylase in skeletal muscle, Biochem. Soc. Trans, vol.31, pp.182-185, 2003.

J. N. Nielsen, S. B. Jørgensen, C. Frøsig, B. Viollet, F. Andreelli et al., A possible role for AMP-activated protein kinase in exercise-induced glucose utilization: insights from humans and transgenic animals, Biochem. Soc. Trans, vol.31, pp.186-190, 2003.

N. Musi, H. Yu, and L. J. Goodyear, AMP-activated protein kinase regulation and action in skeletal muscle during exercise, Biochem. Soc. Trans, vol.31, pp.191-195, 2003.

N. Musi and L. J. Goodyear, AMP-activated protein kinase and muscle glucose uptake, Acta Physiol. Scand, vol.178, pp.337-345, 2003.

D. Carling, L. G. Fryer, A. Woods, T. Daniel, S. L. Jarvie et al., Bypassing the glucose/fatty acid cycle: AMPactivated protein kinase, Biochem. Soc. Trans, vol.31, pp.1157-1160, 2003.

J. F. Wojtaszewski, J. N. Nielsen, S. B. Jørgensen, C. Frøsig, J. B. Birk et al., Transgenic models: a scientific tool to understand exercise-induced metabolism: the regulatory role of AMPK (59-AMP-activated protein kinase) in glucose transport and glycogen synthase activity in skeletal muscle, Biochem. Soc. Trans, vol.31, pp.1290-1294, 2003.

D. G. Hardie, AMP-activated protein kinase: a key system mediating metabolic responses to exercise, Med. Sci. Sports Exerc, vol.36, pp.28-34, 2004.

W. G. Aschenbach, K. Sakamoto, and L. J. Goodyear, 59 adenosine monophosphate-activated protein kinase, metabolism and exercise, Sports Med, vol.34, pp.91-103, 2004.

B. R. Barnes and J. R. Zierath, Role of AMP: activated protein kinase in the control of glucose homeostasis, Curr. Mol. Med, vol.5, pp.341-348, 2005.

D. G. Hardie and K. Sakamoto, AMPK: a key sensor of fuel and energy status in skeletal muscle, Physiology (Bethesda), vol.21, pp.48-60, 2006.

S. B. Jørgensen, E. A. Richter, and J. F. Wojtaszewski, Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise, J. Physiol, vol.574, pp.17-31, 2006.

N. Fujii, N. Jessen, and L. J. Goodyear, AMP-activated protein kinase and the regulation of glucose transport, Am. J. Physiol. Endocrinol. Metab, vol.291, pp.867-877, 2006.

B. E. Crute, K. Seefeld, J. Gamble, B. E. Kemp, and L. A. Witters, Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase, J. Biol. Chem, vol.273, pp.35347-35354, 1998.

T. J. Iseli, M. Walter, B. J. Van-denderen, F. Katsis, L. A. Witters et al., AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270), J. Biol. Chem, vol.280, pp.13395-13400, 2005.

E. R. Hudson, D. A. Pan, J. James, J. M. Lucocq, S. A. Hawley et al., A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias, Curr. Biol, vol.13, pp.861-866, 2003.

G. Polekhina, A. Gupta, B. J. Michell, B. Van-denderen, S. Murthy et al., AMPK b subunit targets metabolic stress sensing to glycogen, Curr. Biol, vol.13, pp.867-871, 2003.

J. W. Scott, S. A. Hawley, K. A. Green, M. Anis, G. Stewart et al., CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations, J. Clin. Invest, vol.113, pp.274-284, 2004.

N. Kazgan, T. Williams, L. J. Forsberg, and J. E. Brenman, Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase, Mol. Biol. Cell, vol.21, pp.3433-3442, 2010.

S. M. Warden, C. Richardson, J. O'donnell, . Jr, D. Stapleton et al., Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization, Biochem. J, vol.354, pp.275-283, 2001.

J. S. Oakhill, Z. Chen, J. W. Scott, R. Steel, L. A. Castelli et al., ) b-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMPactivated protein kinase (AMPK), Proc. Natl. Acad. Sci. USA, vol.107, pp.19237-19241, 2010.

J. Liang, Z. Xu, Z. Ding, Y. Lu, Q. Yu et al., Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance, Nat. Commun, vol.6, p.7926, 2015.

K. Pinter, A. Jefferson, G. Czibik, H. Watkins, and C. Redwood, Subunit composition of AMPK trimers present in the cytokinetic apparatus: implications for drug target identification, Cell Cycle, vol.11, pp.917-921, 2012.

K. Pinter, R. T. Grignani, G. Czibik, H. Farza, H. Watkins et al., Embryonic expression of AMPK g subunits and the identification of a novel g2 transcript variant in adult heart, J. Mol. Cell. Cardiol, vol.53, pp.342-349, 2012.

K. Pinter, R. T. Grignani, H. Watkins, and C. Redwood, Localisation of AMPK g subunits in cardiac and skeletal muscles, J. Muscle Res. Cell Motil, vol.34, pp.369-378, 2013.

T. E. Jensen, F. A. Ross, M. Kleinert, L. Sylow, J. R. Knudsen et al., PT-1 selectively activates AMPK-g1 complexes in mouse skeletal muscle, but activates all three g subunit complexes in cultured human cells by inhibiting the respiratory chain, Biochem. J, vol.467, pp.461-472, 2015.

F. Rajamohan, A. R. Reyes, R. K. Frisbie, L. R. Hoth, P. Sahasrabudhe et al., Probing the enzyme kinetics, allosteric modulation and activation of a1-and a2-subunitcontaining AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators, Biochem. J, vol.473, pp.581-592, 2016.

J. S. Oakhill, R. Steel, Z. Chen, J. W. Scott, N. Ling et al., AMPK is a direct adenylate charge-regulated protein kinase, Science, vol.332, pp.1433-1435, 2011.

P. C. Cheung, I. P. Salt, S. P. Davies, D. G. Hardie, and D. Carling, Characterization of AMP-activated protein kinase gammasubunit isoforms and their role in AMP binding, Biochem. J, vol.346, pp.659-669, 2000.

J. F. Wojtaszewski, J. B. Birk, C. Frøsig, M. Holten, H. Pilegaard et al., ) 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes, J. Physiol, vol.564, pp.563-573, 2005.

J. T. Treebak, J. B. Birk, B. F. Hansen, G. S. Olsen, and J. F. Wojtaszewski, A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle, Am. J. Physiol. Cell Physiol, vol.297, pp.1041-1052, 2009.

D. E. Kristensen, P. H. Albers, C. Prats, O. Baba, J. B. Birk et al., Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise, J. Physiol, vol.593, pp.2053-2069, 2015.

L. Lantier, J. Fentz, R. Mounier, J. Leclerc, J. T. Treebak et al., AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity, FASEB J, vol.28, pp.3211-3224, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00979373

J. Fentz, R. Kjøbsted, J. B. Birk, A. B. Jordy, J. Jeppesen et al., AMPKa is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice, FASEB J, vol.29, pp.1725-1738, 2015.

H. M. O'neill, S. J. Maarbjerg, J. D. Crane, J. Jeppesen, S. B. Jørgensen et al., AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise, Proc. Natl. Acad. Sci. USA, vol.108, pp.16092-16097, 2011.

M. Mahlapuu, C. Johansson, K. Lindgren, G. Hjälm, B. R. Barnes et al., Expression profiling of the gamma-subunit isoforms of AMPactivated protein kinase suggests a major role for gamma3 in white skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.286, pp.194-200, 2004.

J. B. Birk and J. F. Wojtaszewski, Predominant alpha2/ beta2/gamma3 AMPK activation during exercise in human skeletal muscle, J. Physiol, vol.577, pp.1021-1032, 2006.

T. J. Iseli, J. S. Oakhill, M. F. Bailey, S. Wee, M. Walter et al., AMP-activated protein kinase subunit interactions: beta1:gamma1 association requires beta1 Thr-263 and Tyr-267, J. Biol. Chem, vol.283, pp.4799-4807, 2008.

G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The protein kinase complement of the human genome, Science, vol.298, pp.1912-1934, 2002.

J. M. Lizcano, O. Göransson, R. Toth, M. Deak, N. A. Morrice et al., LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, EMBO J, vol.23, pp.833-843, 2004.

A. K. Al-hakim, O. Göransson, M. Deak, R. Toth, D. G. Campbell et al., cooperates with LKB1 to regulate the activity and localization of QSK and SIK, J. Cell Sci, vol.118, pp.5661-5673, 2005.

H. Koh, T. Toyoda, N. Fujii, M. M. Jung, A. Rathod et al., Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle, Proc. Natl. Acad. Sci. USA, vol.107, pp.15541-15546, 2010.

D. L. Lefebvre, Y. Bai, N. Shahmolky, M. Sharma, R. Poon et al., Identification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK, Biochem. J, vol.355, pp.297-305, 2001.

S. J. Lessard, D. A. Rivas, K. So, H. Koh, A. L. Queiroz et al., The AMPK-related kinase SNARK regulates muscle mass and myocyte survival, J. Clin. Invest, vol.126, pp.560-570, 2016.

S. Broberg and K. Sahlin, Adenine nucleotide degradation in human skeletal muscle during prolonged exercise, J. Appl. Physiol, vol.67, pp.116-122, 1989.

B. Norman, A. Sollevi, L. Kaijser, J. , and E. , ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion, Clin. Physiol, vol.7, pp.503-510, 1987.

A. Bateman, The structure of a domain common to archaebacteria and the homocystinuria disease protein, Trends Biochem. Sci, vol.22, pp.12-13, 1997.

D. Carling, P. R. Clarke, V. A. Zammit, and D. G. Hardie, Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities, Eur. J. Biochem, vol.186, pp.129-136, 1989.

A. Ferrer, C. Caelles, N. Massot, and F. G. Hegardt, Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 59-monophosphate, Biochem. Biophys. Res. Commun, vol.132, pp.497-504, 1985.

B. E. Kemp, Bateman domains and adenosine derivatives form a binding contract, J. Clin. Invest, vol.113, pp.182-184, 2004.

B. Xiao, M. J. Sanders, E. Underwood, R. Heath, F. V. Mayer et al., Structure of mammalian AMPK and its regulation by ADP, Nature, vol.472, pp.230-233, 2011.

M. Suter, U. Riek, R. Tuerk, U. Schlattner, T. Wallimann et al., Dissecting the role of 59-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase, J. Biol. Chem, vol.281, pp.32207-32216, 2006.

S. P. Davies, N. R. Helps, P. T. Cohen, and D. G. Hardie, 59-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase: studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC, FEBS Lett, vol.377, pp.421-425, 1995.

L. Garcia-haro, M. A. Garcia-gimeno, D. Neumann, M. Beullens, M. Bollen et al., The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 beta cells, FASEB J, vol.24, pp.5080-5091, 2010.

M. J. Sanders, P. O. Grondin, B. D. Hegarty, M. A. Snowden, and D. Carling, Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade, Biochem. J, vol.403, pp.139-148, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478681

Y. Wu, P. Song, J. Xu, M. Zhang, and M. H. Zou, Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase, J. Biol. Chem, vol.282, pp.9777-9788, 2007.

H. Koh, D. E. Arnolds, N. Fujii, T. T. Tran, M. J. Rogers et al., Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3, Mol. Cell. Biol, vol.26, pp.8217-8227, 2006.

K. Sakamoto, A. Mccarthy, D. Smith, K. A. Green, D. Grahame-hardie et al., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, EMBO J, vol.24, pp.1810-1820, 2005.

C. D. Smith, R. A. Compton, J. S. Bowler, J. T. Kemp, S. N. Sudweeks et al., Characterization of the liver kinase B1-mouse protein-25 -Ste-20-related adaptor protein complex in adult mouse skeletal muscle, J. Appl. Physiol, vol.111, pp.1622-1628, 2011.

D. M. Thomson, B. B. Porter, J. H. Tall, H. Kim, J. R. Barrow et al., Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.196-202, 2007.

T. E. Jensen, A. J. Rose, S. B. Jørgensen, N. Brandt, P. Schjerling et al., Possible CaMKKdependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.1308-1317, 2007.

J. T. Treebak, J. B. Birk, A. J. Rose, B. Kiens, E. A. Richter et al., AS160 phosphorylation is associated with activation of alpha2beta2gamma1-but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.715-722, 2007.

D. G. Hardie, New roles for the LKB1-.AMPK pathway, Curr. Opin. Cell Biol, vol.17, pp.167-173, 2005.

K. Sakamoto, O. Göransson, D. G. Hardie, A. , and D. R. , Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR, Am. J. Physiol. Endocrinol. Metab, vol.287, pp.310-317, 2004.

S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain et al., Calmodulindependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell Metab, vol.2, pp.9-19, 2005.

A. Woods, K. Dickerson, R. Heath, S. Hong, M. Momcilovic et al., Ca2+/calmodulindependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metab, vol.2, pp.21-33, 2005.

A. Mcbride, S. Ghilagaber, A. Nikolaev, and D. G. Hardie, The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor, Cell Metab, vol.9, pp.23-34, 2009.

J. F. Wojtaszewski, C. Macdonald, J. N. Nielsen, Y. Hellsten, D. G. Hardie et al., Regulation of 5'AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.284, pp.813-822, 2003.

W. Derave, H. Ai, J. Ihlemann, L. A. Witters, S. Kristiansen et al., Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slowtwitch muscle, Diabetes, vol.49, pp.1281-1287, 2000.

J. F. Wojtaszewski, S. B. Jørgensen, Y. Hellsten, D. G. Hardie, and E. A. Richter, Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle, Diabetes, vol.51, pp.284-292, 2002.

G. K. Mcconell, R. S. Lee-young, Z. Chen, N. K. Stepto, N. N. Huynh et al., Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen, J. Physiol, vol.568, pp.665-676, 2005.

Y. Oligschlaeger, M. Miglianico, D. Chanda, R. Scholz, R. F. Thali et al., The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation, J. Biol. Chem, vol.290, pp.11715-11728, 2015.

R. J. Valentine, K. A. Coughlan, N. B. Ruderman, and A. K. Saha, Insulin inhibits AMPK activity and phosphorylates AMPK Ser 485 / 491 through Akt in hepatocytes, myotubes and incubated rat skeletal muscle, Arch. Biochem. Biophys, vol.562, pp.62-69, 2014.

W. W. Winder and D. G. Hardie, Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise, Am. J. Physiol, vol.270, pp.299-304, 1996.

Z. P. Chen, G. K. Mcconell, B. J. Michell, R. J. Snow, B. J. Canny et al., AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation, Am. J. Physiol. Endocrinol. Metab, vol.279, pp.1202-1206, 2000.

N. Fujii, T. Hayashi, M. F. Hirshman, J. T. Smith, S. A. Habinowski et al., Exercise induces isoformspecific increase in 5'AMP-activated protein kinase activity in human skeletal muscle, Biochem. Biophys. Res. Commun, vol.273, pp.1150-1155, 2000.

J. F. Wojtaszewski, P. Nielsen, B. F. Hansen, E. A. Richter, and B. Kiens, Isoform-specific and exercise intensity-dependent activation of 59-AMP-activated protein kinase in human skeletal muscle, J. Physiol, vol.528, pp.221-226, 2000.

Z. P. Chen, T. J. Stephens, S. Murthy, B. J. Canny, M. Hargreaves et al., Effect of exercise intensity on skeletal muscle AMPK signaling in humans, Diabetes, vol.52, pp.2205-2212, 2003.

T. J. Stephens, Z. Chen, B. J. Canny, B. J. Michell, B. E. Kemp et al., Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise, Am. J. Physiol. Endocrinol. Metab, vol.282, pp.688-694, 2002.

J. F. Wojtaszewski, M. Mourtzakis, T. Hillig, B. Saltin, and H. Pilegaard, Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise, Biochem. Biophys. Res. Commun, vol.298, pp.309-316, 2002.

N. Musi, N. Fujii, M. F. Hirshman, I. Ekberg, S. Fröberg et al., AMPactivated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise, Diabetes, vol.50, pp.921-927, 2001.

I. Salt, J. W. Celler, S. A. Hawley, A. Prescott, A. Woods et al., AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform, Biochem. J, vol.334, pp.177-187, 1998.

J. T. Treebak, C. Pehmøller, J. M. Kristensen, R. Kjøbsted, J. B. Birk et al., Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle, J. Physiol, vol.592, pp.351-375, 2014.

S. R. Costford, N. Kavaslar, N. Ahituv, S. N. Chaudhry, W. S. Schackwitz et al., Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle, PLoS One, vol.2, p.903, 2007.

D. Milan, J. T. Jeon, C. Looft, V. Amarger, A. Robic et al., A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle, Science, vol.288, pp.1248-1251, 2000.

B. R. Barnes, S. Marklund, T. L. Steiler, M. Walter, G. Hjälm et al., The 59-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle, J. Biol. Chem, vol.279, pp.38441-38447, 2004.

L. Barré, C. Richardson, M. F. Hirshman, J. Brozinick, S. Fiering et al., Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.802-811, 2007.

M. Schönke, M. G. Myers, . Jr, J. R. Zierath, and M. Björnholm, Skeletal muscle AMP-activated protein kinase g1 (H151R) overexpression enhances whole body energy homeostasis and insulin sensitivity, Am. J. Physiol. Endocrinol. Metab, vol.309, pp.679-690, 2015.

P. M. Garcia-roves, M. E. Osler, M. H. Holmström, and J. R. Zierath, Gain-of-function R225Q mutation in AMP-activated protein kinase g3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle, J. Biol. Chem, vol.283, pp.35724-35734, 2008.

R. Kjøbsted, J. T. Treebak, J. Fentz, L. Lantier, B. Viollet et al., Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner, Diabetes, vol.64, pp.2042-2055, 2015.

J. N. Nielsen, K. J. Mustard, D. A. Graham, H. Yu, C. S. Macdonald et al., -AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle, J. Appl. Physiol, vol.94, pp.631-641, 1985.

B. Mortensen, J. R. Hingst, N. Frederiksen, R. W. Hansen, C. S. Christiansen et al., Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.304, pp.1379-1390, 2013.

R. S. Lee-young, B. J. Canny, D. E. Myers, and G. K. Mcconell, AMPK activation is fiber type specific in human skeletal muscle: effects of exercise and short-term exercise training, J. Appl. Physiol, vol.107, pp.283-289, 2009.

V. G. Coffey, Z. Zhong, A. Shield, B. J. Canny, A. V. Chibalin et al., Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans, FASEB J, vol.20, pp.190-192, 2006.

K. A. Burgomaster, K. R. Howarth, S. M. Phillips, M. Rakobowchuk, M. J. Macdonald et al., Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans, J. Physiol, vol.586, pp.151-160, 2008.

C. Frøsig, S. B. Jørgensen, D. G. Hardie, E. A. Richter, and J. F. Wojtaszewski, 59-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.286, pp.411-417, 2004.

E. Lendoye, B. Sibille, A. S. Rousseau, J. Murdaca, P. A. Grimaldi et al., PPARbeta activation induces rapid changes of both AMPK subunit expression and AMPK activation in mouse skeletal muscle, Mol. Endocrinol, vol.25, pp.1487-1498, 2011.

W. W. Winder and D. G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am. J. Physiol, vol.277, pp.1-10, 1999.

D. Grahame-hardie, Regulation of AMP-activated protein kinase by natural and synthetic activators, Acta Pharm. Sin. B, vol.6, pp.1-19, 2016.

J. E. Sullivan, F. Carey, D. Carling, and R. K. Beri, Characterisation of 59-AMP-activated protein kinase in human liver using specific peptide substrates and the effects of 59-AMP analogues on enzyme activity, Biochem. Biophys. Res. Commun, vol.200, pp.1551-1556, 1994.

A. E. Gadalla, T. Pearson, A. J. Currie, N. Dale, S. A. Hawley et al., AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus, J. Neurochem, vol.88, pp.1272-1282, 2004.

P. Day, A. Sharff, L. Parra, A. Cleasby, M. Williams et al., Structure of a CBSdomain pair from the regulatory g1 subunit of human AMPK in complex with AMP and ZMP, Acta Crystallogr. D Biol. Crystallogr, vol.63, pp.587-596, 2007.

J. Adams, Z. Chen, B. J. Van-denderen, C. J. Morton, M. W. Parker et al., Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site, Protein Sci, vol.13, pp.155-165, 2004.

B. Daignan-fornier and B. Pinson, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 59-monophosphate (AICAR), a highly conserved purine intermediate with multiple effects, Metabolites, vol.2, pp.292-302, 2012.

R. Dixon, J. Gourzis, D. Mcdermott, J. Fujitaki, P. Dewland et al., AICA-riboside: safety, tolerance, and pharmacokinetics of a novel adenosine-regulating agent, J. Clin. Pharmacol, vol.31, pp.342-347, 1991.

S. B. Jørgensen, B. Viollet, F. Andreelli, C. Frøsig, J. B. Birk et al., Knockout of the alpha2 but not alpha1 59-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle, J. Biol. Chem, vol.279, pp.1070-1079, 2004.

G. R. Steinberg, H. M. O'neill, N. L. Dzamko, S. Galic, T. Naim et al., Whole body deletion of AMP-activated protein kinase b2 reduces muscle AMPK activity and exercise capacity, J. Biol. Chem, vol.285, pp.37198-37209, 2010.

J. E. Gómez-galeno, Q. Dang, T. H. Nguyen, S. H. Boyer, M. P. Grote et al., A potent and selective AMPK activator that inhibits de novo lipogenesis, ACS Med. Chem. Lett, vol.1, pp.478-482, 2010.

R. W. Hunter, M. Foretz, L. Bultot, M. D. Fullerton, M. Deak et al., Mechanism of action of compound-13: an a1-selective small molecule activator of AMPK, Chem. Biol, vol.21, pp.866-879, 2014.

C. G. Langendorf, K. R. Ngoei, J. W. Scott, N. X. Ling, S. M. Issa et al., Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding, Nat. Commun, vol.7, p.10912, 2016.

M. R. Owen, E. Doran, and A. P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem. J, vol.348, pp.607-614, 2000.

Y. S. Lee, W. S. Kim, K. H. Kim, M. J. Yoon, H. J. Cho et al., Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states, Diabetes, vol.55, pp.2256-2264, 2006.

J. Zheng and V. D. Ramirez, Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals, Br. J. Pharmacol, vol.130, pp.1115-1123, 2000.

S. A. Hawley, F. A. Ross, C. Chevtzoff, K. A. Green, A. Evans et al., Use of cells expressing g subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab, vol.11, pp.554-565, 2010.

V. Sarabia, L. Lam, E. Burdett, L. A. Leiter, and A. Klip, Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin, J. Clin. Invest, vol.90, pp.1386-1395, 1992.

J. M. Kristensen, J. T. Treebak, P. Schjerling, L. Goodyear, and J. F. Wojtaszewski, Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle, Am. J. Physiol. Endocrinol. Metab, vol.306, pp.1099-1109, 2014.

B. Cool, B. Zinker, W. Chiou, L. Kifle, N. Cao et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metab, vol.3, pp.403-416, 2006.

M. F. Calabrese, F. Rajamohan, M. S. Harris, N. L. Caspers, R. Magyar et al., Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms, vol.22, pp.1161-1172, 2014.

M. J. Sanders, Z. S. Ali, B. D. Hegarty, R. Heath, M. A. Snowden et al., Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family, J. Biol. Chem, vol.282, pp.32539-32548, 2007.

B. Xiao, M. J. Sanders, D. Carmena, N. J. Bright, L. F. Haire et al., Structural basis of AMPK regulation by small molecule activators, Nat. Commun, vol.4, p.3017, 2013.

Y. Lai, S. Kviklyte, D. Vertommen, L. Lantier, M. Foretz et al., A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators, Biochem. J, vol.460, pp.363-375, 2014.

E. C. Cokorinos, J. Delmore, A. R. Reyes, B. Albuquerque, R. Kjøbsted et al., Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice, Cell Metab, vol.25, pp.1147-1159, 2017.

R. W. Myers, H. Guan, J. Ehrhart, A. Petrov, S. Prahalada et al., Science, vol.357, pp.507-511, 2017.

S. A. Hawley, M. D. Fullerton, F. A. Ross, J. D. Schertzer, C. Chevtzoff et al., The ancient drug salicylate directly activates AMP-activated protein kinase, Science, vol.336, pp.918-922, 2012.

Y. Serizawa, R. Oshima, M. Yoshida, I. Sakon, K. Kitani et al., Salicylate acutely stimulates 59-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscles, Biochem. Biophys. Res. Commun, vol.453, pp.81-85, 2014.

B. Xiao, R. Heath, P. Saiu, F. C. Leiper, P. Leone et al., Structural basis for AMP binding to mammalian AMP-activated protein kinase, Nature, vol.449, pp.496-500, 2007.

B. K. Pedersen and B. Saltin, Exercise as medicine: evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand, J. Med. Sci. Sports, vol.25, issue.3, pp.1-72, 2015.

C. Brandt and B. K. Pedersen, The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases, J. Biomed. Biotechnol, p.520258, 2010.

B. K. Pedersen and M. A. Febbraio, Muscles, exercise and obesity: skeletal muscle as a secretory organ, Nat. Rev. Endocrinol, vol.8, pp.457-465, 2012.

M. Whitham and M. A. Febbraio, The ever-expanding myokinome: discovery challenges and therapeutic implications, Nat. Rev. Drug Discov, vol.15, pp.719-729, 2016.

P. A. Kern, S. Ranganathan, C. Li, L. Wood, and G. Ranganathan, Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance, Am. J. Physiol. Endocrinol. Metab, vol.280, pp.745-751, 2001.

J. P. Drenth, S. H. Van-uum, M. Van-deuren, G. J. Pesman, J. Van-der-ven-jongekrijg et al., Endurance run increases circulating IL-6 and IL-1ra but downregulates ex vivo TNF-alpha and IL-1 beta production, J. Appl. Physiol, vol.79, pp.1497-1503, 1995.

A. Steensberg, G. Van-hall, T. Osada, M. Sacchetti, B. Saltin et al., Production of interleukin-6 in contracting human skeletal muscles can account for the exerciseinduced increase in plasma interleukin-6, J. Physiol, vol.529, pp.237-242, 2000.

C. Weigert, M. Düfer, P. Simon, E. Debre, H. Runge et al., Upregulation of IL-6 mRNA by IL-6 in skeletal muscle cells: role of IL-6 mRNA stabilization and Ca2+-dependent mechanisms, Am. J. Physiol. Cell Physiol, vol.293, pp.1139-1147, 2007.

C. Macdonald, J. F. Wojtaszewski, B. K. Pedersen, B. Kiens, and E. A. Richter, Interleukin-6 release from human skeletal muscle during exercise: relation to AMPK activity, J. Appl. Physiol, vol.95, pp.2273-2277, 2003.

H. P. Lauritzen, J. Brandauer, P. Schjerling, H. J. Koh, J. T. Treebak et al., Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo, Diabetes, vol.62, pp.3081-3092, 2013.

A. S. Lihn, S. B. Pedersen, S. Lund, and B. Richelsen, The anti-diabetic AMPK activator AICAR reduces IL-6 and IL-8 in human adipose tissue and skeletal muscle cells, Mol. Cell. Endocrinol, vol.292, pp.36-41, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00532036

S. Glund, J. T. Treebak, Y. C. Long, R. Barres, B. Viollet et al., Role of adenosine 59-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle, Endocrinology, vol.150, pp.600-606, 2009.

A. L. Carey, G. R. Steinberg, S. L. Macaulay, W. G. Thomas, A. G. Holmes et al., Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMPactivated protein kinase, Diabetes, vol.55, pp.2688-2697, 2006.

N. B. Ruderman, C. Keller, A. M. Richard, A. K. Saha, Z. Luo et al., Interleukin-6 regulation of AMP-activated protein kinase: potential role in the systemic response to exercise and prevention of the metabolic syndrome, Diabetes, vol.55, issue.2, pp.48-54, 2006.

M. Kelly, C. Keller, P. R. Avilucea, P. Keller, Z. Luo et al., AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise, Biochem. Biophys. Res. Commun, vol.320, pp.449-454, 2004.

C. Zhang, Y. Li, Y. Wu, L. Wang, X. Wang et al., Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration, J. Biol. Chem, vol.288, pp.1489-1499, 2013.

T. Tsujinaka, C. Ebisui, J. Fujita, M. Kishibuchi, T. Morimoto et al., Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse, Biochem. Biophys. Res. Commun, vol.207, pp.168-174, 1995.

J. Scheller, A. Chalaris, D. Schmidt-arras, R. , and S. , The pro-and anti-inflammatory properties of the cytokine interleukin-6, Biochim. Biophys. Acta, vol.1813, pp.878-888, 2011.

M. H. Chan, A. L. Carey, M. J. Watt, and M. A. Febbraio, Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.287, pp.322-327, 2004.

Y. Tamura, K. Watanabe, T. Kantani, J. Hayashi, N. Ishida et al., Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise?, Endocr. J, vol.58, pp.211-215, 2011.

J. Brenmoehl, E. Albrecht, K. Komolka, L. Schering, M. Langhammer et al., Irisin is elevated in skeletal muscle and serum of mice immediately after acute exercise, Int. J. Biol. Sci, vol.10, pp.338-349, 2014.

V. B. Matthews, M. B. Aström, M. H. Chan, C. R. Bruce, K. S. Krabbe et al., Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP, vol.52, pp.1409-1418, 2009.

C. Broholm, O. H. Mortensen, S. Nielsen, T. Akerstrom, A. Zankari et al., Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle, J. Physiol, vol.586, pp.2195-2201, 2008.

M. J. Abbott, S. Constantinescu, and L. P. Turcotte, AMPactivated protein kinase a2 is an essential signal in the regulation of insulin-stimulated fatty acid uptake in control-fed and high-fat-fed mice, Exp. Physiol, vol.97, pp.603-617, 2012.

J. D. Crane, L. G. Macneil, J. S. Lally, R. J. Ford, A. L. Bujak et al., Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging, Aging Cell, vol.14, pp.625-634, 2015.

J. S. Lally, R. J. Ford, J. Johar, J. D. Crane, B. E. Kemp et al., Skeletal muscle AMPK is essential for the maintenance of FNDC5 expression, Physiol. Rep, vol.3, pp.1-9, 2015.

J. Y. Huh, V. Mougios, A. Kabasakalis, I. Fatouros, A. Siopi et al., Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation, J. Clin. Endocrinol. Metab, vol.99, pp.2154-2161, 2014.

N. Brandt, H. M. O'neill, M. Kleinert, P. Schjerling, E. Vernet et al., Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.309, pp.142-153, 2015.

K. M. Ajuwon and M. E. Spurlock, Direct regulation of lipolysis by interleukin-15 in primary pig adipocytes, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.287, pp.608-611, 2004.

J. E. Krolopp, S. M. Thornton, A. , and M. J. , IL-15 activates the Jak3/STAT3 signaling pathway to mediate glucose uptake in skeletal muscle cells, Front. Physiol, vol.7, p.626, 2016.

J. Mu, J. T. Brozinick, . Jr, O. Valladares, M. Bucan et al., A role for AMP-activated protein kinase in contractionand hypoxia-regulated glucose transport in skeletal muscle, Mol. Cell, vol.7, pp.1085-1094, 2001.

N. Dzamko, J. D. Schertzer, J. G. Ryall, R. Steel, S. L. Macaulay et al., AMPK-independent pathways regulate skeletal muscle fatty acid oxidation, J. Physiol, vol.586, pp.5819-5831, 2008.

J. Jeppesen, S. J. Maarbjerg, A. B. Jordy, A. M. Fritzen, C. Pehmøller et al., regulates lipid oxidation during exercise independently of AMPK, vol.62, pp.1490-1499, 2013.

N. Fujii, M. F. Hirshman, E. M. Kane, R. C. Ho, L. E. Peter et al., AMP-activated protein kinase alpha2 activity is not essential for contraction-and hyperosmolarityinduced glucose transport in skeletal muscle, J. Biol. Chem, vol.280, pp.39033-39041, 2005.

T. L. Merry, G. R. Steinberg, G. S. Lynch, and G. K. Mcconell, Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK, Am. J. Physiol. Endocrinol. Metab, vol.298, pp.577-585, 2010.

T. E. Jensen, P. Schjerling, B. Viollet, J. F. Wojtaszewski, and E. A. Richter, AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle, PLoS One, vol.3, p.2102, 2008.

N. Lefort, E. St-amand, S. Morasse, C. H. Côté, and A. Marette, The alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro, Am. J. Physiol. Endocrinol. Metab, vol.295, pp.1447-1454, 2008.

J. F. Glatz, J. J. Luiken, and A. Bonen, Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease, Physiol. Rev, vol.90, pp.367-417, 2010.

E. J. Kurth-kraczek, M. F. Hirshman, L. J. Goodyear, and W. W. Winder, AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle, Diabetes, vol.48, pp.1667-1671, 1999.

J. A. Chavez, W. G. Roach, S. R. Keller, W. S. Lane, and G. E. Lienhard, Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation, J. Biol. Chem, vol.283, pp.9187-9195, 2008.

C. Pehmøller, J. T. Treebak, J. B. Birk, S. Chen, C. Mackintosh et al., Genetic disruption of AMPK signaling abolishes both contraction-and insulinstimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.297, pp.665-675, 2009.

C. Frøsig, C. Pehmøller, J. B. Birk, E. A. Richter, and J. F. Wojtaszewski, Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle, J. Physiol, vol.588, pp.4539-4548, 2010.

K. Vichaiwong, S. Purohit, D. An, T. Toyoda, N. Jessen et al., Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle, Biochem. J, vol.431, pp.311-320, 2010.

R. Kjøbsted, A. J. Pedersen, J. R. Hingst, R. Sabaratnam, J. B. Birk et al., Intact regulation of the AMPK signaling network in response to exercise and insulin in skeletal muscle of male patients with type 2 diabetes: illumination of AMPK activation in recovery from exercise, Diabetes, vol.65, pp.1219-1230, 2016.

F. Szekeres, A. Chadt, R. Z. Tom, A. S. Deshmukh, A. V. Chibalin et al., The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism, Am. J. P Endocrinol. Metab, vol.303, pp.524-533, 2012.

J. Dokas, A. Chadt, T. Nolden, H. Himmelbauer, J. R. Zierath et al., Conventional knockout of Tbc1d1 in mice impairs insulin-and AICAR-stimulated glucose uptake in skeletal muscle, Endocrinology, vol.154, pp.3502-3514, 2013.

J. Stöckli, C. C. Meoli, N. J. Hoffman, D. J. Fazakerley, H. Pant et al., The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle, Diabetes, vol.64, pp.1914-1922, 2015.

A. Chadt, A. Immisch, C. De-wendt, C. Springer, Z. Zhou et al., Deletion of both Rab-GTPase-activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin-and AICARstimulated glucose transport, Diabetes, vol.64, pp.746-759, 2015.

J. M. Mcmahon, E. Signori, K. E. Wells, V. M. Fazio, and D. J. Wells, Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase: increased expression with reduced muscle damage, Gene Ther, vol.8, pp.1264-1270, 2001.

L. Chen, Q. Chen, B. Xie, C. Quan, Y. Sheng et al., Disruption of the AMPK-TBC1D1 nexus increases lipogenic gene expression and causes obesity in mice via promoting IGF1 secretion, Proc. Natl. Acad. Sci. USA, vol.113, pp.7219-7224, 2016.

Q. Chen, B. Xie, S. Zhu, P. Rong, Y. Sheng et al., A Tbc1d1 (Ser231Ala)-knockin mutation partially impairs AICAR-but not exercise-induced muscle glucose uptake in mice, Diabetologia, vol.60, pp.336-345, 2017.

H. M. O'neill, J. S. Lally, S. Galic, M. Thomas, P. D. Azizi et al., AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice, Diabetologia, vol.57, pp.1693-1702, 2014.

H. M. O'neill, J. S. Lally, S. Galic, T. Pulinilkunnil, R. J. Ford et al., Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise, Physiol. Rep, vol.3, pp.1-10, 2015.

J. Jeppesen, P. H. Albers, A. J. Rose, J. B. Birk, P. Schjerling et al., Contractioninduced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent, J. Lipid Res, vol.52, pp.699-711, 2011.

M. A. Raney and L. P. Turcotte, Regulation of contractioninduced FA uptake and oxidation by AMPK and ERK1/2 is intensity dependent in rodent muscle, Am. J. Physiol. Endocrinol. Metab, vol.291, pp.1220-1227, 2006.

B. B. Rasmussen, C. R. Hancock, and W. W. Winder, Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase, J. Appl. Physiol, vol.85, pp.1629-1634, 1998.

C. Frøsig, C. Roepstorff, N. Brandt, S. J. Maarbjerg, J. B. Birk et al., Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.296, pp.787-795, 2009.

L. Bar-peled and D. M. Sabatini, Regulation of mTORC1 by amino acids, Trends Cell Biol, vol.24, pp.400-406, 2014.

X. Yu and Y. C. Long, Autophagy modulates amino acid signaling network in myotubes: differential effects on mTORC1 pathway and the integrated stress response, FASEB J, vol.29, pp.394-407, 2015.

C. C. Dibble and B. D. Manning, Signal integration by mTORC1 coordinates nutrient input with biosynthetic output, Nat. Cell Biol, vol.15, pp.555-564, 2013.

K. Inoki, T. Zhu, and K. Guan, TSC2 mediates cellular energy response to control cell growth and survival, Cell, vol.115, pp.577-590, 2003.

S. W. Cheng, L. G. Fryer, D. Carling, and P. R. Shepherd, Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status, J. Biol. Chem, vol.279, pp.15719-15722, 2004.

H. C. Dreyer, S. Fujita, J. G. Cadenas, D. L. Chinkes, E. Volpi et al., Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle, J. Physiol, vol.576, pp.613-624, 2006.

D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint, Mol. Cell, vol.30, pp.214-226, 2008.

S. Horman, G. Browne, U. Krause, J. Patel, D. Vertommen et al., Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis, Curr. Biol, vol.12, pp.1419-1423, 2002.

V. Aguilar, S. Alliouachene, A. Sotiropoulos, A. Sobering, Y. Athea et al., S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase, Cell Metab, vol.5, pp.476-487, 2007.

C. J. Carlson, M. F. White, and C. M. Rondinone, Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation, Biochem. Biophys. Res. Commun, vol.316, pp.533-539, 2004.

L. S. Harrington, G. M. Findlay, A. Gray, T. Tolkacheva, S. Wigfield et al., The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins, J. Cell Biol, vol.166, pp.213-223, 2004.

F. Tremblay, S. Brûlé, S. Hee-um, Y. Li, K. Masuda et al., Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient-and obesity-induced insulin resistance, Proc. Natl. Acad. Sci. USA, vol.104, pp.14056-14061, 2007.

S. H. Um, F. Frigerio, M. Watanabe, F. Picard, M. Joaquin et al., Absence of S6K1 protects against age-and dietinduced obesity while enhancing insulin sensitivity, Nature, vol.431, pp.200-205, 2004.

Y. Zhang and B. D. Manning, 2015) mTORC1 signaling activates NRF1 to increase cellular proteasome levels, Cell Cycle, vol.14, pp.2011-2017

S. C. Bodine, E. Latres, S. Baumhueter, V. K. Lai, L. Nunez et al., Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, vol.294, pp.1704-1708, 2001.

M. D. Gomes, S. H. Lecker, R. T. Jagoe, A. Navon, and A. L. Goldberg, Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy, Proc. Natl. Acad. Sci. USA, vol.98, pp.14440-14445, 2001.

E. L. Greer, P. R. Oskoui, M. R. Banko, J. M. Maniar, M. P. Gygi et al., The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem, vol.282, pp.30107-30119, 2007.

Y. Kamei, S. Miura, M. Suzuki, Y. Kai, J. Mizukami et al., Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/ red muscle) fiber genes, and impaired glycemic control, J. Biol. Chem, vol.279, pp.41114-41123, 2004.

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, E. Calabria et al., Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy, Cell, vol.117, pp.399-412, 2004.

C. Mammucari, G. Milan, V. Romanello, E. Masiero, R. Rudolf et al., FoxO3 controls autophagy in skeletal muscle in vivo, Cell Metab, vol.6, pp.458-471, 2007.

J. Zhao, J. J. Brault, A. Schild, P. Cao, M. Sandri et al., FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells, Cell Metab, vol.6, pp.472-483, 2007.

R. Singh and A. M. Cuervo, Autophagy in the cellular energetic balance, Cell Metab, vol.13, pp.495-504, 2011.

E. Y. Chan, ) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex, Sci. Signal, vol.2, p.51, 2009.

N. Hosokawa, T. Hara, T. Kaizuka, C. Kishi, A. Takamura et al., Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol. Biol. Cell, vol.20, pp.1981-1991, 2009.

C. H. Jung, C. B. Jun, S. Ro, Y. Kim, N. M. Otto et al., ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery, Mol. Biol. Cell, vol.20, pp.1992-2003, 2009.

N. Mizushima, A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker, Mol. Biol. Cell, vol.15, pp.1101-1111, 2004.

D. F. Egan, D. B. Shackelford, M. M. Mihaylova, S. Gelino, R. A. Kohnz et al., Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy, Science, vol.331, pp.456-461, 2011.

J. Kim, M. Kundu, B. Viollet, and K. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat. Cell Biol, vol.13, pp.132-141, 2011.

J. W. Lee, S. Park, Y. Takahashi, and H. G. Wang, The association of AMPK with ULK1 regulates autophagy, PLoS One, vol.5, p.15394, 2010.

L. Shang, S. Chen, F. Du, S. Li, L. Zhao et al., Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK, Proc. Natl. Acad. Sci. USA, vol.108, pp.4788-4793, 2011.

A. M. Fritzen, A. B. Madsen, M. Kleinert, J. T. Treebak, A. Lundsgaard et al., Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation, J. Physiol, vol.594, pp.745-761, 2016.

A. M. Fritzen, C. Frøsig, J. Jeppesen, T. E. Jensen, A. M. Lundsgaard et al., Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle, Cell. Signal, vol.28, pp.663-674, 2016.

N. C. Chang, M. Nguyen, J. Bourdon, P. A. Risse, J. Martin et al., Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle, Hum. Mol. Genet, vol.21, pp.2277-2287, 2012.

E. Masiero, L. Agatea, C. Mammucari, B. Blaauw, E. Loro et al., Autophagy is required to maintain muscle mass, Cell Metab, vol.10, pp.507-515, 2009.

E. Masiero and M. Sandri, Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles, Autophagy, vol.6, pp.307-309, 2010.

I. Nemazanyy, B. Blaauw, C. Paolini, C. Caillaud, F. Protasi et al., Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease, EMBO Mol. Med, vol.5, pp.870-890, 2013.

N. Raben, V. Hill, L. Shea, S. Takikita, R. Baum et al., Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease, Hum. Mol. Genet, vol.17, pp.3897-3908, 2008.

M. Sandri, Autophagy in health and disease: 3. Involvement of autophagy in muscle atrophy, Am. J. Physiol. Cell Physiol, vol.298, pp.1291-1297, 2010.

S. Kaushik and A. M. Cuervo, AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA, Autophagy, vol.12, pp.432-438, 2016.

P. Felig, T. Pozefsky, E. Marliss, G. F. Cahill, and . Jr, Alanine: key role in gluconeogenesis, Science, vol.167, pp.1003-1004, 1970.

A. L. Bujak, J. D. Crane, J. S. Lally, R. J. Ford, S. J. Kang et al., AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging, Cell Metab, vol.21, pp.883-890, 2015.

V. Sica, L. Galluzzi, . Bravo-san, J. M. Pedro, V. Izzo et al., Organelle-specific initiation of autophagy, Mol. Cell, vol.59, pp.522-539, 2015.

V. Romanello, E. Guadagnin, L. Gomes, I. Roder, C. Sandri et al., Mitochondrial fission and remodelling contributes to muscle atrophy, EMBO J, vol.29, pp.1774-1785, 2010.

W. Tian, W. Li, Y. Chen, Z. Yan, X. Huang et al., Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy, FEBS Lett, vol.589, pp.1847-1854, 2015.

S. Ducommun, M. Deak, D. Sumpton, R. J. Ford, A. Galindo et al., Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate, Cell. Signal, vol.27, pp.978-988, 2015.

E. Q. Toyama, S. Herzig, J. Courchet, T. L. Lewis, O. C. Loson et al., AMP-activated protein kinase mediates mitochondrial fission in response to energy stress, Science, vol.351, pp.275-281, 2016.

R. C. Laker, J. C. Drake, R. J. Wilson, V. A. Lira, B. M. Lewellen et al., Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exerciseinduced mitophagy, Nat. Commun, vol.8, p.548, 2017.

Y. Chen, M. B. Azad, and S. B. Gibson, Superoxide is the major reactive oxygen species regulating autophagy, Cell Death Differ, vol.16, pp.1040-1052, 2009.

K. J. Davies, A. T. Quintanilha, G. A. Brooks, and L. Packer, Free radicals and tissue damage produced by exercise, Biochem. Biophys. Res. Commun, vol.107, pp.1198-1205, 1982.

S. K. Powers, J. Duarte, A. N. Kavazis, and E. E. Talbert, Reactive oxygen species are signalling molecules for skeletal muscle adaptation, Exp. Physiol, vol.95, pp.1-9, 2010.

M. Ristow, K. Zarse, A. Oberbach, N. Klöting, M. Birringer et al., Antioxidants prevent health-promoting effects of physical exercise in humans, Proc. Natl. Acad. Sci. USA, vol.106, pp.8665-8670, 2009.

A. Alexander, S. L. Cai, J. Kim, A. Nanez, M. Sahin et al., , 2010.

, Proc. Natl. Acad. Sci. USA, vol.107, pp.4153-4158

D. N. Tripathi, R. Chowdhury, L. J. Trudel, A. R. Tee, R. S. Slack et al., Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1, Proc. Natl. Acad. Sci. USA, vol.110, pp.2950-2957, 2013.

J. Zhang, J. Kim, A. Alexander, S. Cai, D. N. Tripathi et al., A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS, Nat. Cell Biol, vol.15, pp.1186-1196, 2013.

J. Zhang, D. N. Tripathi, J. Jing, A. Alexander, J. Kim et al., ATM functions at the peroxisome to induce pexophagy in response to ROS, Nat. Cell Biol, vol.17, pp.1259-1269, 2015.

J. W. Zmijewski, S. Banerjee, H. Bae, A. Friggeri, E. R. Lazarowski et al., Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase, J. Biol. Chem, vol.285, pp.33154-33164, 2010.

M. Rahman, M. Mofarrahi, A. S. Kristof, B. Nkengfac, S. Harel et al., Reactive oxygen species regulation of autophagy in skeletal muscles, Antioxid. Redox Signal, vol.20, pp.443-459, 2014.

L. Li, Y. Chen, and S. B. Gibson, Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation, Cell. Signal, vol.25, pp.50-65, 2013.

S. Jiang, D. W. Park, Y. Gao, S. Ravi, V. Darley-usmar et al., Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMPactivated protein kinase, Cell. Signal, vol.27, pp.1186-1197, 2015.

D. G. Hardie and M. L. Ashford, AMPK: regulating energy balance at the cellular and whole body levels, Physiology (Bethesda), vol.29, pp.99-107, 2014.

D. A. Hood, A. Balaban, M. K. Connor, E. E. Craig, M. L. Nishio et al., Mitochondrial biogenesis in striated muscle, Can. J. Appl. Physiol, vol.19, pp.12-48, 1994.

S. B. Jørgensen, J. T. Treebak, B. Viollet, P. Schjerling, S. Vaulont et al., Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.331-339, 2007.

K. S. Röckl, M. F. Hirshman, J. Brandauer, N. Fujii, L. A. Witters et al., Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift, Diabetes, vol.56, pp.2062-2069, 2007.

J. Brandauer, M. A. Andersen, H. Kellezi, S. Risis, C. Frøsig et al., AMP-activated protein kinase controls exercise training-and AICAR-induced increases in SIRT3 and MnSOD, Front. Physiol, vol.6, p.85, 2015.

S. Jäger, C. Handschin, J. St-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc. Natl. Acad. Sci. USA, vol.104, pp.12017-12022, 2007.

C. Lerin, J. T. Rodgers, D. E. Kalume, S. H. Kim, A. Pandey et al., GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha, Cell Metab, vol.3, pp.429-438, 2006.

S. Nemoto, M. M. Fergusson, and T. Finkel, SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1alpha, J. Biol. Chem, vol.280, pp.16456-16460, 2005.

Z. Gerhart-hines, J. T. Rodgers, O. Bare, C. Lerin, S. Kim et al., Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1a, EMBO J, vol.26, pp.1913-1923, 2007.

C. Cantó, Z. Gerhart-hines, J. N. Feige, M. Lagouge, L. Noriega et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.458, pp.1056-1060, 2009.

D. W. Edington and W. B. Mccafferty, Mitochondrial size distribution analysis in the soleus muscle of trained and aged rats, Experientia, vol.29, pp.692-693, 1973.

C. Cantó, L. Q. Jiang, A. S. Deshmukh, C. Mataki, A. Coste et al., Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle, Cell Metab, vol.11, pp.213-219, 2010.

Y. Olmos, F. J. Sánchez-gómez, B. Wild, N. García-quintans, S. Cabezudo et al., SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/ PGC-1a complex, Antioxid. Redox Signal, vol.19, pp.1507-1521, 2013.

A. M. Sanchez, A. Csibi, A. Raibon, K. Cornille, S. Gay et al., AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1, J. Cell. Biochem, vol.113, pp.695-710, 2012.

A. Peserico, F. Chiacchiera, V. Grossi, A. Matrone, D. Latorre et al., A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels, Cell. Mol. Life Sci, vol.70, pp.2015-2029, 2013.

F. F. Jöbsis and W. N. Stainsby, Oxidation of NADH during contractions of circulated mammalian skeletal muscle, Respir. Physiol, vol.4, pp.292-300, 1968.

L. Lin, K. Chen, W. Khalek, I. Ward, J. L. Yang et al., Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3, PLoS One, vol.9, p.85636, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01189895

X. Kong, R. Wang, Y. Xue, X. Liu, H. Zhang et al., Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis, PLoS One, vol.5, p.11707, 2010.

A. Giralt, E. Hondares, J. A. Villena, F. Ribas, J. Díaz-delfín et al., Peroxisome receptor-g coactivator-1a controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype, J. Biol. Chem, vol.286, pp.16958-16966, 2011.

M. Buler, S. M. Aatsinki, V. Izzi, and J. Hakkola, Metformin reduces hepatic expression of SIRT3, the mitochondrial deacetylase controlling energy metabolism, PLoS One, vol.7, p.49863, 2012.

F. Lan, J. M. Cacicedo, N. Ruderman, and Y. Ido, SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation, J. Biol. Chem, vol.283, pp.27628-27635, 2008.

N. L. Price, A. P. Gomes, A. J. Ling, F. V. Duarte, A. Martin-montalvo et al., SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function, Cell Metab, vol.15, pp.675-690, 2012.

A. Philp, A. Chen, D. Lan, G. A. Meyer, A. N. Murphy et al., Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise, J. Biol. Chem, vol.286, pp.30561-30570, 2011.

N. Lützner, H. Kalbacher, A. Krones-herzig, and F. Rösl, FOXO3 is a glucocorticoid receptor target and regulates LKB1 and its own expression based on cellular AMP levels via a positive autoregulatory loop, PLoS One, vol.7, p.42166, 2012.

N. Lützner, J. De-castro-arce, and F. Rösl, Gene expression of the tumour suppressor LKB1 is mediated by Sp1, NF-Y and FOXO transcription factors, PLoS One, vol.7, p.32590, 2012.

K. J. Bitterman, R. M. Anderson, H. Y. Cohen, M. Latorre-esteves, and D. A. Sinclair, Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1, J. Biol. Chem, vol.277, pp.45099-45107, 2002.

J. R. Revollo, A. A. Grimm, and S. Imai, The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells, J. Biol. Chem, vol.279, pp.50754-50763, 2004.

A. Garten, S. Petzold, A. Körner, S. Imai, and W. Kiess, Nampt: linking NAD biology, metabolism and cancer, Trends Endocrinol. Metab, vol.20, pp.130-138, 2009.

C. Lau, M. Niere, and M. Ziegler, The NMN/NaMN adenylyltransferase (NMNAT) protein family, Front. Biosci, vol.14, pp.410-431, 2009.

J. Brandauer, S. G. Vienberg, M. A. Andersen, S. Ringholm, S. Risis et al., AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle, J. Physiol, vol.591, pp.5207-5220, 2013.

J. H. Um, J. S. Pendergast, D. A. Springer, M. Foretz, B. Viollet et al., AMPK regulates circadian rhythms in a tissue-and isoform-specific manner, PLoS One, vol.6, p.18450, 2011.

E. Vieira, E. C. Nilsson, A. Nerstedt, M. Ormestad, Y. C. Long et al., Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.295, pp.1032-1037, 2008.

K. M. Ramsey, J. Yoshino, C. S. Brace, D. Abrassart, Y. Kobayashi et al., Circadian clock feedback cycle through NAMPT-mediated NAD(+) biosynthesis, Science, vol.324, pp.651-654, 2009.

Y. Nakahata, S. Sahar, G. Astarita, M. Kaluzova, and P. Sassone-corsi, Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1, Science, vol.324, pp.654-657, 2009.

K. A. Lamia, U. M. Sachdeva, L. Ditacchio, E. C. Williams, J. G. Alvarez et al., AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation, Science, vol.326, pp.437-440, 2009.

D. W. Frederick, J. G. Davis, A. Dávila, . Jr, B. Agarwal et al., Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism, J. Biol. Chem, vol.290, pp.1546-1558, 2015.

A. P. Gomes, N. L. Price, A. J. Ling, J. J. Moslehi, M. K. Montgomery et al., Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging, Cell, vol.155, pp.1624-1638, 2013.

M. L. Johnson, B. A. Irving, I. R. Lanza, M. H. Vendelbo, A. R. Konopka et al., Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging, J. Gerontol. A Biol. Sci. Med. Sci, vol.70, pp.1386-1393, 2015.

N. A. Khan, M. Auranen, I. Paetau, E. Pirinen, L. Euro et al., Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3, EMBO Mol. Med, vol.6, pp.721-731, 2014.

A. Sriwijitkamol, D. K. Coletta, E. Wajcberg, G. B. Balbontin, S. M. Reyna et al., Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study, Diabetes, vol.56, pp.836-848, 2007.

R. S. Lee-young, G. Koufogiannis, B. J. Canny, and G. K. Mcconell, Acute exercise does not cause sustained elevations in AMPK signaling or expression, Med. Sci. Sports Exerc, vol.40, pp.1490-1494, 2008.

Y. Hellsten, E. A. Richter, B. Kiens, and J. Bangsbo, AMP deamination and purine exchange in human skeletal muscle during and after intense exercise, J. Physiol, vol.520, pp.909-920, 1999.

H. Pilegaard, G. A. Ordway, B. Saltin, and P. D. Neufer, Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise, Am. J. Physiol. Endocrinol. Metab, vol.279, pp.806-814, 2000.

D. J. Mahoney, G. Parise, S. Melov, A. Safdar, and M. A. Tarnopolsky, Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise, FASEB J, vol.19, pp.1498-1500, 2005.

R. C. Scarpulla, Nuclear activators and coactivators in mammalian mitochondrial biogenesis, Biochim. Biophys. Acta, vol.1576, pp.1-14, 2002.

S. L. Mcgee, B. J. Van-denderen, K. F. Howlett, J. Mollica, J. D. Schertzer et al., AMPactivated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5, Diabetes, vol.57, pp.860-867, 2008.

D. M. Thomson, S. T. Herway, N. Fillmore, H. Kim, J. D. Brown et al., AMP-activated protein kinase phosphorylates transcription factors of the CREB family, J. Appl. Physiol, vol.104, pp.429-438, 1985.

S. B. Jørgensen, J. F. Wojtaszewski, B. Viollet, F. Andreelli, J. B. Birk et al., Effects of a-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle, FASEB J, vol.19, pp.1146-1148, 2005.

B. F. Holmes, D. B. Lang, M. J. Birnbaum, J. Mu, and G. L. Dohm, AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.287, pp.739-743, 2004.

J. Fentz, R. Kjøbsted, C. M. Kristensen, J. R. Hingst, J. B. Birk et al., AMPKa is essential for acute exerciseinduced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.309, pp.900-914, 2015.

J. F. Wojtaszewski and E. A. Richter, Effects of acute exercise and training on insulin action and sensitivity: focus on molecular mechanisms in muscle, Essays Biochem, vol.42, pp.31-46, 2006.

E. A. Richter, L. P. Garetto, M. N. Goodman, and N. B. Ruderman, Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin, J. Clin. Invest, vol.69, pp.785-793, 1982.

E. A. Richter, K. J. Mikines, H. Galbo, and B. Kiens, Effect of exercise on insulin action in human skeletal muscle, J. Appl. Physiol, vol.66, pp.876-885, 1989.

G. D. Cartee and J. O. Holloszy, Exercise increases susceptibility of muscle glucose transport to activation by various stimuli, Am. J. Physiol, vol.258, pp.390-393, 1990.

G. D. Cartee, D. A. Young, M. D. Sleeper, J. Zierath, H. Wallberg-henriksson et al., Prolonged increase in insulin-stimulated glucose transport in muscle after exercise, Am. J. Physiol, vol.256, pp.494-499, 1989.

K. J. Mikines, B. Sonne, P. A. Farrell, B. Tronier, and H. Galbo, Effect of physical exercise on sensitivity and responsiveness to insulin in humans, Am. J. Physiol, vol.254, pp.248-259, 1988.

A. G. Douen, T. Ramlal, S. Rastogi, P. J. Bilan, G. D. Cartee et al., Exercise induces recruitment of the "insulin-responsive glucose transporter": evidence for distinct intracellular insulin-and exercise-recruitable transporter pools in skeletal muscle, J. Biol. Chem, vol.265, pp.13427-13430, 1990.

A. Klip, T. Ramlal, D. A. Young, and J. O. Holloszy, Insulininduced translocation of glucose transporters in rat hindlimb muscles, FEBS Lett, vol.224, pp.224-230, 1987.

A. Zisman, O. D. Peroni, E. D. Abel, M. D. Michael, F. Mauvais-jarvis et al., Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance, Nat. Med, vol.6, pp.924-928, 2000.

P. A. Hansen, L. A. Nolte, M. M. Chen, and J. O. Holloszy, Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise, J. Appl. Physiol, vol.85, pp.1218-1222, 1985.

E. A. Richter, L. P. Garetto, M. N. Goodman, and N. B. Ruderman, Enhanced muscle glucose metabolism after exercise: modulation by local factors, Am. J. Physiol, vol.246, pp.476-482, 1984.

K. Funai, G. G. Schweitzer, N. Sharma, M. Kanzaki, and G. D. Cartee, Increased AS160 phosphorylation, but not TBC1D1 phosphorylation, with increased postexercise insulin sensitivity in rat skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.297, pp.242-251, 2009.

K. Funai, G. G. Schweitzer, C. M. Castorena, M. Kanzaki, and G. D. Cartee, In vivo exercise followed by in vitro contraction additively elevates subsequent insulin-stimulated glucose transport by rat skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.298, pp.999-1010, 2010.

T. Hamada, E. B. Arias, and G. D. Cartee, Increased submaximal insulin-stimulated glucose uptake in mouse skeletal muscle after treadmill exercise, J. Appl. Physiol, vol.101, pp.1368-1376, 2006.

J. F. Wojtaszewski, B. F. Hansen, B. Kiens, and E. A. Richter, Insulin signaling in human skeletal muscle: time course and effect of exercise, Diabetes, vol.46, pp.1775-1781, 1997.

J. F. Wojtaszewski, B. F. Hansen, . Gade, B. Kiens, J. F. Markuns et al., Insulin signaling and insulin sensitivity after exercise in human skeletal muscle, Diabetes, vol.49, pp.325-331, 2000.

E. B. Arias, J. Kim, K. Funai, and G. D. Cartee, Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.1191-1200, 2007.

S. Kane, H. Sano, S. C. Liu, J. M. Asara, W. S. Lane et al., A method to identify serine kinase substrates: Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain, J. Biol. Chem, vol.277, pp.22115-22118, 2002.

H. Sano, S. Kane, E. Sano, C. P. Mîinea, J. M. Asara et al., Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation, J. Biol. Chem, vol.278, pp.14599-14602, 2003.

M. D. Bruss, E. B. Arias, G. E. Lienhard, and G. D. Cartee, Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity, Diabetes, vol.54, pp.41-50, 2005.

J. T. Treebak, C. Frøsig, C. Pehmøller, S. Chen, S. J. Maarbjerg et al., Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle, Diabetologia, vol.52, pp.891-900, 2009.

J. T. Treebak, S. Glund, A. Deshmukh, D. K. Klein, Y. C. Long et al., AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits, Diabetes, vol.55, pp.2051-2058, 2006.

J. S. Fisher, J. Gao, D. Han, J. O. Holloszy, and L. A. Nolte, Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin, Am. J. Physiol. Endocrinol. Metab, vol.282, pp.18-23, 2002.

R. Kjøbsted, N. Munk-hansen, J. B. Birk, M. Foretz, B. Viollet et al., Enhanced muscle insulin sensitivity after contraction/ exercise is mediated by AMPK, Diabetes, vol.66, pp.598-612, 2017.

J. Yang and G. D. Holman, Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes, J. Biol. Chem, vol.280, pp.4070-4078, 2005.

J. A. Romijn, E. F. Coyle, L. S. Sidossis, A. Gastaldelli, J. F. Horowitz et al., Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration, Am. J. Physiol, vol.265, pp.380-391, 1993.

B. Kiens and E. A. Richter, Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans, Am. J. Physiol, vol.275, pp.332-337, 1998.

N. E. Kimber, G. J. Heigenhauser, L. L. Spriet, and D. J. Dyck, Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans, J. Physiol, vol.548, pp.919-927, 2003.

P. J. Roach, A. A. Depaoli-roach, T. D. Hurley, and V. S. Tagliabracci, Glycogen and its metabolism: some new developments and old themes, Biochem. J, vol.441, pp.763-787, 2012.

D. L. Friedman and J. Larner, Studies on UDPG-alphaglucan transglucosylase: III. Interconversion of two forms of muscle UDPG-alpha-glucan transglucosylase by a phosphorylation-dephosphorylation reaction sequence, Biochemistry, vol.2, pp.669-675, 1963.

L. F. Leloir, J. M. Olavarria, S. H. Goldemberg, and H. Carminatti, Biosynthesis of glycogen from uridine diphosphate glucose, Arch. Biochem. Biophys, vol.81, pp.508-520, 1959.

D. Carling and D. G. Hardie, The substrate and sequence specificity of the AMP-activated protein kinase: phosphorylation of glycogen synthase and phosphorylase kinase, Biochim. Biophys. Acta, vol.1012, pp.81-86, 1989.

R. W. Hunter, J. T. Treebak, J. F. Wojtaszewski, and K. Sakamoto, Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle, Diabetes, vol.60, pp.766-774, 2011.

A. Mcbride and D. G. Hardie, AMP-activated protein kinase: a sensor of glycogen as well as AMP and ATP?, Acta Physiol. (Oxf.), vol.196, pp.99-113, 2009.

X. Li, L. Wang, X. E. Zhou, J. Ke, P. W. De-waal et al., Structural basis of AMPK regulation by adenine nuclotides and glycogen, Cell Res, vol.25, pp.50-66, 2015.

J. Mu, E. R. Barton, and M. J. Birnbaum, Selective suppression of AMP-activated protein kinase in skeletal muscle: update on 'lazy mice, Biochem. Soc. Trans, vol.31, pp.236-241, 2003.

A. C. Smith, C. R. Bruce, and D. J. Dyck, AMP kinase activation with AICAR simultaneously increases fatty acid and glucose oxidation in resting rat soleus muscle, J. Physiol, vol.565, pp.537-546, 2005.

D. K. Klein, H. Pilegaard, J. T. Treebak, T. E. Jensen, B. Viollet et al., Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise, Am. J. Physiol. Endocrinol. Metab, vol.293, pp.1242-1249, 2007.

A. M. Fritzen, A. M. Lundsgaard, J. Jeppesen, M. L. Christiansen, R. Biensø et al., 59-AMP activated protein kinase a 2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4, J. Physiol, vol.593, pp.4765-4780, 2015.

E. A. Shoubridge, R. A. Challiss, D. J. Hayes, and G. K. Radda, Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue betaguanidinopropionic acid, Biochem. J, vol.232, pp.125-131, 1985.

J. M. Ren, C. F. Semenkovich, and J. O. Holloszy, Adaptation of muscle to creatine depletion: effect on GLUT-4 glucose transporter expression, Am. J. Physiol, vol.264, pp.146-150, 1993.

L. Leick, J. Fentz, R. S. Biensø, J. G. Knudsen, J. Jeppesen et al., PGC-1alpha is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.299, pp.456-465, 2010.

J. O. Holloszy, Biochemical adaptations in muscle: effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle, J. Biol. Chem, vol.242, pp.2278-2282, 1967.

J. O. Holloszy, Regulation of mitochondrial biogenesis and GLUT4 expression by exercise, Compr. Physiol, vol.1, pp.921-940, 2011.

K. A. Zwetsloot, L. M. Westerkamp, B. F. Holmes, and T. P. Gavin, AMPK regulates basal skeletal muscle capillarization and VEGF expression, but is not necessary for the angiogenic response to exercise, J. Physiol, vol.586, pp.6021-6035, 2008.

M. P. Morissette, S. E. Susser, A. N. Stammers, K. A. O'hara, P. F. Gardiner et al., Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium-ATPase isoforms induced by exercise training, J. Appl. Physiol, vol.117, pp.544-555, 2014.

D. C. Wright, P. C. Geiger, D. Han, T. E. Jones, and J. O. Holloszy, Calcium induces increases in peroxisome proliferatoractivated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation, J. Biol. Chem, vol.282, pp.18793-18799, 2007.

A. R. Pogozelski, T. Geng, P. Li, X. Yin, V. A. Lira et al., mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice, PLoS One, vol.4, p.7934, 2009.

I. Irrcher, V. Ljubicic, and D. A. Hood, Interactions between ROS and AMP kinase activity in the regulation of PGC-1a transcription in skeletal muscle cells, Am. J. Physiol. Cell Physiol, vol.296, pp.116-123, 2009.

K. Baar, Nutrition and the adaptation to endurance training, Sports Med, vol.44, issue.1, pp.5-12, 2014.

E. O. Ojuka, T. E. Jones, L. A. Nolte, M. Chen, B. R. Wamhoff et al., Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca, vol.2, 2002.

, Am. J. Physiol. Endocrinol. Metab, vol.282, pp.1008-1013

S. Mora and J. E. Pessin, The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter, J. Biol. Chem, vol.275, pp.16323-16328, 2000.

C. Lemercier, A. Verdel, B. Galloo, S. Curtet, M. P. Brocard et al., ) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity, J. Biol. Chem, vol.275, pp.15594-15599, 2000.

T. A. Mckinsey, C. L. Zhang, J. Lu, and E. N. Olson, Signaldependent nuclear export of a histone deacetylase regulates muscle differentiation, Nature, vol.408, pp.106-111, 2000.

S. L. Mcgee and M. Hargreaves, Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle, Diabetes, vol.53, pp.1208-1214, 2004.

S. L. Mcgee, D. Sparling, A. L. Olson, and M. Hargreaves, Exercise increases MEF2-and GEF DNA-binding activity in human skeletal muscle, FASEB J, vol.20, pp.348-349, 2006.

S. L. Mcgee, C. Swinton, S. Morrison, V. Gaur, D. E. Campbell et al., Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress, FASEB J, vol.28, pp.3384-3395, 2014.

M. A. Pearen and G. E. Muscat, Minireview: nuclear hormone receptor 4A signaling: implications for metabolic disease, Mol. Endocrinol, vol.24, pp.1891-1903, 2010.

M. Catoire, M. Mensink, M. V. Boekschoten, R. Hangelbroek, M. Müller et al., Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle, PLoS One, vol.7, p.51066, 2012.

N. J. Christensen, H. Galbo, J. F. Hansen, B. Hesse, E. A. Richter et al., Catecholamines and exercise, Diabetes, vol.28, issue.1, pp.58-62, 1979.

M. A. Pearen, S. A. Myers, S. Raichur, J. G. Ryall, G. S. Lynch et al., The orphan nuclear receptor, NOR-1, a target of beta-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle, Endocrinology, vol.149, pp.2853-2865, 2008.

M. A. Pearen, J. G. Ryall, M. A. Maxwell, N. Ohkura, G. S. Lynch et al., The orphan nuclear receptor, NOR-1, is a target of beta-adrenergic signaling in skeletal muscle, Endocrinology, vol.147, pp.5217-5227, 2006.

S. A. Myers, N. Eriksson, R. Burow, S. Wang, and G. E. Muscat, Beta-adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues, Mol. Cell. Endocrinol, vol.309, pp.101-108, 2009.

S. J. Maarbjerg, S. B. Jørgensen, A. J. Rose, J. Jeppesen, T. E. Jensen et al., Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice, Am. J. Physiol. Endocrinol. Metab, vol.297, pp.924-934, 2009.

R. S. Lee-young, S. R. Griffee, S. E. Lynes, D. P. Bracy, J. E. Ayala et al., Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo, J. Biol. Chem, vol.284, pp.23925-23934, 2009.

M. J. Abbott and L. P. Turcotte, AMPK-a2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet, J. Appl. Physiol, vol.117, pp.869-879, 2014.

C. B. Tanner, S. R. Madsen, D. M. Hallowell, D. M. Goring, T. M. Moore et al., Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1, Am. J. Physiol. Endocrinol. Metab, vol.305, pp.1018-1029, 2013.

T. Piper, A. Thomas, N. Baume, T. Sobolevsky, M. Saugy et al., Determination of 13 C/ 12 C ratios of endogenous urinary 5-amino-imidazole-4-carboxamide 1b-D-ribofuranoside (AICAR), Rapid Commun. Mass Spectrom, vol.28, pp.1194-1202, 2014.

V. A. Narkar, M. Downes, R. T. Yu, E. Embler, Y. X. Wang et al., AMPK and PPARdelta agonists are exercise mimetics, Cell, vol.134, pp.405-415, 2008.

D. T. Mangano, Y. Miao, I. C. Tudor, and C. Dietzel, Investigators of the Multicenter Study of Perioperative Ischemia (McSPI) Research Group

, Ischemia Research and Education Foundation (IREF). (2006) Post-reperfusion myocardial infarction: long-term survival improvement using adenosine regulation with acadesine, J. Am. Coll. Cardiol, vol.48, pp.206-214

D. J. Cuthbertson, J. A. Babraj, K. J. Mustard, M. C. Towler, K. A. Green et al., 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men, Diabetes, vol.56, pp.2078-2084, 2007.

J. A. Babraj, K. Mustard, C. Sutherland, M. C. Towler, S. Chen et al., Blunting of AICAR-induced human skeletal muscle glucose uptake in type 2 diabetes is dependent on age rather than diabetic status, Am. J. Physiol. Endocrinol. Metab, vol.296, pp.1042-1048, 2009.

S. A. Crawford, S. R. Costford, C. Aguer, S. C. Thomas, R. A. Dekemp et al., Naturally occurring R225W mutation of the gene encoding AMP-activated protein kinase (AMPK)gamma(3) results in increased oxidative capacity and glucose uptake in human primary myotubes, Diabetologia, vol.53, pp.1986-1997, 2010.

A. Granlund, O. Kotova, B. Benziane, D. Galuska, M. Jensen-waern et al., Effects of exercise on muscle glycogen synthesis signalling and enzyme activities in pigs carrying the PRKAG3 mutation, Exp. Physiol, vol.95, pp.541-549, 2010.

B. Essén-gustavsson, A. Granlund, B. Benziane, M. Jensen-waern, and A. V. Chibalin, Muscle glycogen resynthesis, signalling and metabolic responses following acute exercise in exercise-trained pigs carrying the PRKAG3 mutation, Exp. Physiol, vol.96, pp.927-937, 2011.

B. A. Pederson, C. R. Cope, J. M. Schroeder, M. W. Smith, J. M. Irimia et al., Exercise capacity of mice genetically lacking muscle glycogen synthase: in mice, muscle glycogen is not essential for exercise, J. Biol. Chem, vol.280, pp.17260-17265, 2005.

C. E. Xirouchaki, S. P. Mangiafico, K. Bate, Z. Ruan, A. M. Huang et al., Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice, Mol. Metab, vol.5, pp.221-232, 2016.

H. Yu, M. F. Hirshman, N. Fujii, J. M. Pomerleau, L. E. Peter et al., Muscle-specific overexpression of wild type and R225Q mutant AMP-activated protein kinase gamma3-subunit differentially regulates glycogen accumulation, Am. J. Physiol. Endocrinol. Metab, vol.291, pp.557-565, 2006.

B. R. Barnes, S. Glund, Y. C. Long, G. Hjälm, L. Andersson et al., -AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics, FASEB J, vol.19, pp.773-779, 2005.

B. R. Barnes, Y. C. Long, T. L. Steiler, Y. Leng, D. Galuska et al., Changes in exercise-induced gene expression in 59-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice, Diabetes, vol.54, pp.3484-3489, 2005.

A. Granlund, M. Jensen-waern, and B. Essén-gustavsson, The influence of the PRKAG3 mutation on glycogen, enzyme activities and fibre types in different skeletal muscles of exercise trained pigs, Acta Vet. Scand, vol.53, p.20, 2011.

K. Marcinko, A. L. Bujak, J. S. Lally, R. J. Ford, T. H. Wong et al., The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice, Mol. Metab, vol.4, pp.643-651, 2015.

J. Um, S. Park, H. Kang, S. Yang, M. Foretz et al., AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol, Diabetes, vol.59, pp.554-563, 2010.

S. K. Malin and B. Braun, Effect of metformin on substrate utilization after exercise training in adults with impaired glucose tolerance, Appl. Physiol. Nutr. Metab, vol.38, pp.427-430, 2013.

C. Cadeddu, S. Nocco, C. Lucia, M. Deidda, A. Bina et al., Effects of metformin and exercise training, alone or in association, on cardio-pulmonary performance and quality of life in insulin resistance patients, Cardiovasc. Diabetol, vol.13, p.93, 2014.

L. Gliemann, J. F. Schmidt, J. Olesen, R. S. Biensø, S. L. Peronard et al., Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men, J. Physiol, vol.591, pp.5047-5059, 2013.

N. Hart, L. Sarga, Z. Csende, E. Koltai, L. G. Koch et al., Resveratrol enhances exercise training responses in rats selectively bred for high running performance, Food Chem. Toxicol, vol.61, pp.53-59, 2013.

V. W. Dolinsky, K. E. Jones, R. S. Sidhu, M. Haykowsky, M. P. Czubryt et al., Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats, J. Physiol, vol.590, pp.2783-2799, 2012.

V. G. Coffey, B. Jemiolo, J. Edge, A. P. Garnham, S. W. Trappe et al., Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.297, pp.1441-1451, 2009.

V. G. Coffey, H. Pilegaard, A. P. Garnham, B. J. O'brien, and J. A. Hawley, Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle, J. Appl. Physiol, vol.106, pp.1187-1197, 2009.

T. R. Lundberg, R. Fernandez-gonzalo, T. Gustafsson, and P. A. Tesch, Aerobic exercise alters skeletal muscle molecular responses to resistance exercise, Med. Sci. Sports Exerc, vol.44, pp.1680-1688, 2012.

W. Apró, L. Wang, M. Pontén, E. Blomstrand, and K. Sahlin, Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.305, pp.22-32, 2013.

D. M. Thomson, C. A. Fick, G. , and S. E. , AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions, J. Appl. Physiol, vol.104, pp.625-632, 2008.

S. L. Mcgee, K. J. Mustard, D. G. Hardie, and K. Baar, Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice, J. Physiol, vol.586, pp.1731-1741, 2008.

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Pende et al., Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy, FASEB J, vol.23, pp.2264-2273, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00363209

I. Riedl, M. E. Osler, M. Björnholm, B. Egan, G. A. Nader et al., AMPKg3 is dispensable for skeletal muscle hypertrophy induced by functional overload, Am. J. Physiol. Endocrinol. Metab, vol.310, pp.461-472, 2016.

N. J. Hoffman, B. L. Parker, R. Chaudhuri, K. H. Fisher-wellman, M. Kleinert et al., Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates, 2015.

, Cell Metab, vol.22, pp.922-935

S. E. Gordon, J. A. Lake, C. M. Westerkamp, and D. M. Thomson, Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass?, Exerc. Sport Sci. Rev, vol.36, pp.179-186, 2008.

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Foretz et al., Antagonistic control of muscle cell size by AMPK and mTORC1, Cell Cycle, vol.10, pp.2640-2646, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00625529

M. M. Thomas, D. C. Wang, D. M. Souza, M. P. Krause, A. S. Layne et al., Musclespecific AMPK b1b2-null mice display a myopathy due to loss of capillary density in nonpostural muscles, FASEB J, vol.28, pp.2098-2107, 2014.

L. Lantier, R. Mounier, J. Leclerc, M. Pende, M. Foretz et al., Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, FASEB J, vol.24, pp.3555-3561, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00484177

T. Egawa, Y. Ohno, A. Goto, A. Ikuta, M. Suzuki et al., AICAR-induced activation of AMPK negatively regulates myotube hypertrophy through the HSP72-mediated pathway in C2C12 skeletal muscle cells, Am. J. Physiol. Endocrinol. Metab, vol.306, pp.344-354, 2014.

D. L. Hamilton, A. Philp, M. G. Mackenzie, A. Patton, M. C. Towler et al., Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation, Am. J. Physiol. Endocrinol. Metab, vol.307, pp.365-373, 2014.

B. Lebret, P. Le-roy, G. Monin, L. Lefaucheur, J. C. Caritez et al., Influence of the three RN genotypes on chemical composition, enzyme activities, and myofiber characteristics of porcine skeletal muscle, J. Anim. Sci, vol.77, pp.1482-1489, 1999.

D. M. Thomson, C. R. Hancock, B. G. Evanson, S. G. Kenney, B. B. Malan et al., Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice, J. Appl. Physiol, vol.108, pp.1775-1785, 2010.

T. Egawa, A. Goto, Y. Ohno, S. Yokoyama, A. Ikuta et al., Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice, Am. J. Physiol. Endocrinol. Metab, vol.309, pp.651-662, 2015.

M. Saclier, H. Yacoub-youssef, A. L. Mackey, L. Arnold, H. Ardjoune et al., Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration, Stem Cells, vol.31, pp.384-396, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00787108

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J. Exp. Med, vol.204, pp.1057-1069, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

T. Varga, R. Mounier, A. Horvath, S. Cuvellier, F. Dumont et al., Highly dynamic transcriptional signature of distinct macrophage subsets during sterile inflammation, resolution, and tissue repair, J. Immunol, vol.196, pp.4771-4782, 2016.

E. Ardite, E. Perdiguero, B. Vidal, S. Gutarra, A. L. Serrano et al., PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy, J. Cell Biol, vol.196, pp.163-175, 2012.

E. Perdiguero, Y. Kharraz, A. L. Serrano, and P. Muñoz-cánoves, MKP-1 coordinates ordered macrophage-phenotype transitions essential for stem cell-dependent tissue repair, Cell Cycle, vol.11, pp.877-886, 2012.

E. Perdiguero, P. Sousa-victor, V. Ruiz-bonilla, M. Jardí, C. Caelles et al., ) p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair, J. Cell Biol, vol.195, pp.307-322, 2011.

G. Juban and B. Chazaud, Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration, FEBS Lett, vol.591, pp.3007-3021, 2017.

X. Zhao, J. W. Zmijewski, E. Lorne, G. Liu, Y. Park et al., Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.295, pp.497-504, 2008.

D. Sag, D. Carling, R. D. Stout, and J. Suttles, Adenosine 59-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype, J. Immunol, vol.181, pp.8633-8641, 2008.

H. W. Jeong, K. C. Hsu, J. Lee, M. Ham, J. Y. Huh et al., Berberine suppresses proinflammatory responses through AMPK activation in macrophages, Am. J. Physiol. Endocrinol. Metab, vol.296, pp.955-964, 2009.

R. Mounier, M. Théret, L. Arnold, S. Cuvellier, L. Bultot et al., AMPKa1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration, Cell Metab, vol.18, pp.251-264, 2013.

T. Varga, R. Mounier, P. Gogolak, S. Poliska, B. Chazaud et al., Tissue LyC6-macrophages are generated in the absence of circulating LyC6-monocytes and Nur77 in a model of muscle regeneration, J. Immunol, vol.191, pp.5695-5701, 2013.

T. Shan, P. Zhang, X. Liang, P. Bi, F. Yue et al., Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis, Stem Cells, vol.32, pp.2893-2907, 2014.

S. D. Gopinath, A. E. Webb, A. Brunet, and T. A. Rando, FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal, Stem Cell Reports, vol.2, pp.414-426, 2014.

T. Simsek, F. Kocabas, J. Zheng, R. J. Deberardinis, A. I. Mahmoud et al., The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche, Cell Stem Cell, vol.7, pp.380-390, 2010.

V. A. Rafalski, E. Mancini, and A. Brunet, Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate, J. Cell Sci, vol.125, pp.5597-5608, 2012.

J. G. Ryall, S. Dell'orso, A. Derfoul, A. Juan, H. Zare et al., The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells, Cell Stem Cell, vol.16, pp.171-183, 2015.

M. Theret, L. Gsaier, B. Schaffer, G. Juban, S. Ben-larbi et al., AMPKa1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis, EMBO J, vol.36, pp.1946-1962, 2017.

V. E. Jahnke, J. H. Van-der-meulen, H. K. Johnston, S. Ghimbovschi, T. Partridge et al., Metabolic remodeling agents show beneficial effects in the dystrophindeficient mdx mouse model, Skelet. Muscle, vol.2, p.16, 2012.

C. Webster, L. Silberstein, A. P. Hays, and H. M. Blau, Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy, Cell, vol.52, pp.503-513, 1988.

J. M. Ervasti and K. P. Campbell, Dystrophin and the membrane skeleton, Curr. Opin. Cell Biol, vol.5, pp.82-87, 1993.

K. E. Davies and K. J. Nowak, Molecular mechanisms of muscular dystrophies: old and new players, Nat. Rev. Mol. Cell Biol, vol.7, pp.762-773, 2006.

A. E. Deconinck, J. A. Rafael, J. A. Skinner, S. C. Brown, A. C. Potter et al., Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy, Cell, vol.90, pp.717-727, 1997.

J. A. Rafael, J. M. Tinsley, A. C. Potter, A. E. Deconinck, and K. E. Davies, Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice, Nat. Genet, vol.19, pp.79-82, 1998.

J. V. Chakkalakal, M. A. Stocksley, M. Harrison, L. M. Angus, J. Deschenes-furry et al., Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling, Proc. Natl. Acad. Sci. USA, vol.100, pp.7791-7796, 2003.

V. Ljubicic, M. Burt, J. A. Lunde, and B. J. Jasmin, Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1a axis, Am. J. Physiol. Cell Physiol, vol.307, pp.66-82, 2014.

V. Ljubicic and B. J. Jasmin, Metformin increases peroxisome proliferator-activated receptor g Co-activator-1a and utrophin a expression in dystrophic skeletal muscle, Muscle Nerve, vol.52, pp.139-142, 2015.

H. Al-rewashdy, V. Ljubicic, W. Lin, J. Renaud, and B. J. Jasmin, Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation, Hum. Mol. Genet, vol.24, pp.1243-1255, 2015.

K. A. Baltgalvis, J. A. Call, G. D. Cochrane, R. C. Laker, Z. Yan et al., Exercise training improves plantar flexor muscle function in mdx mice, Med. Sci. Sports Exerc, vol.44, pp.1671-1679, 2012.

C. D. Markert, L. E. Case, G. T. Carter, P. A. Furlong, and R. W. Grange, Exercise and Duchenne muscular dystrophy: where we have been and where we need to go, Muscle Nerve, vol.45, pp.746-751, 2012.

I. Alemdaroglu, A. Karaduman, Ö. T. Yilmaz, and H. Topaloglu, Different types of upper extremity exercise training in Duchenne muscular dystrophy: effects on functional performance, strength, endurance, and ambulation, Muscle Nerve, vol.51, pp.697-705, 2015.

F. B. Hu, J. E. Manson, M. J. Stampfer, G. Colditz, S. Liu et al., Diet, lifestyle, and the risk of type 2 diabetes mellitus in women, N. Engl. J. Med, vol.345, pp.790-797, 2001.

R. R. Wing, M. G. Goldstein, K. J. Acton, L. L. Birch, J. M. Jakicic et al., Behavioral science research in diabetes: lifestyle changes related to obesity, eating behavior, and physical activity, Diabetes Care, vol.24, pp.117-123, 2001.

L. Bultot, T. E. Jensen, Y. Lai, A. L. Madsen, C. Collodet et al., Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle, Am. J. Physiol. Endocrinol. Metab, vol.311, pp.706-719, 2016.

B. C. Bernardo, K. L. Weeks, L. Pretorius, and J. R. Mcmullen, Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies, Pharmacol. Ther, vol.128, pp.191-227, 2010.

G. K. Bandyopadhyay, J. G. Yu, J. Ofrecio, and J. M. Olefsky, Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis, vol.55, pp.2277-2285, 2006.

K. Højlund, K. J. Mustard, P. Staehr, D. G. Hardie, H. Beck-nielsen et al., AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes, Am. J. Physiol. Endocrinol. Metab, vol.286, pp.239-244, 2004.

N. B. Ruderman, D. Carling, M. Prentki, and J. M. Cacicedo, AMPK, insulin resistance, and the metabolic syndrome, J. Clin. Invest, vol.123, pp.2764-2772, 2013.

R. Pold, L. S. Jensen, N. Jessen, E. S. Buhl, O. Schmitz et al., Long-term AICAR administration and exercise prevents diabetes in ZDF rats, Diabetes, vol.54, pp.928-934, 2005.

E. S. Buhl, N. Jessen, R. Pold, T. Ledet, A. Flyvbjerg et al., Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome, Diabetes, vol.51, pp.2199-2206, 2002.

M. A. Iglesias, J. M. Ye, G. Frangioudakis, A. K. Saha, E. Tomas et al., AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats, Diabetes, vol.51, pp.2886-2894, 2002.

K. R. Kelly, M. J. Abbott, and L. P. Turcotte, Short-term AMPregulated protein kinase activation enhances insulin-sensitive fatty acid uptake and increases the effects of insulin on fatty acid oxidation in L6 muscle cells, Exp. Biol. Med. (Maywood), vol.235, pp.514-521, 2010.

M. Bosselaar, P. Smits, L. J. Van-loon, and C. J. Tack, Intravenous AICAR during hyperinsulinemia induces systemic hemodynamic changes but has no local metabolic effect, J. Clin. Pharmacol, vol.51, pp.1449-1458, 2011.

H. Boon, M. Bosselaar, S. F. Praet, E. E. Blaak, W. H. Saris et al., Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients, Diabetologia, vol.51, pp.1893-1900, 2008.

C. M. Hasenour, D. E. Ridley, C. C. Hughey, F. D. James, E. P. Donahue et al., 5-Aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo, J. Biol. Chem, vol.289, pp.5950-5959, 2014.

R. Bergeron, S. F. Previs, G. W. Cline, P. Perret, I. Russell et al., Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats, Diabetes, vol.50, pp.1076-1082, 2001.

G. R. Steinberg, B. J. Michell, B. J. Van-denderen, M. J. Watt, A. L. Carey et al., Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling, Cell Metab, vol.4, pp.465-474, 2006.

M. F. Gregor and G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol, vol.29, pp.415-445, 2011.

G. Pilon, P. Dallaire, and A. Marette, Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs, J. Biol. Chem, vol.279, pp.20767-20774, 2004.

R. Kjøbsted, J. F. Wojtaszewski, and J. T. Treebak, Role of AMP-activated protein kinase for regulating post-exercise insulin sensitivity, EXS, vol.107, pp.81-126, 2016.

S. Miura, Y. Kai, Y. Kamei, C. R. Bruce, N. Kubota et al., Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise, Am. J. Physiol. Endocrinol. Metab, vol.296, pp.47-55, 2009.

S. Miura, Y. Kai, M. Tadaishi, Y. Tokutake, K. Sakamoto et al., Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm, Am. J. Physiol. Endocrinol. Metab, vol.305, pp.213-229, 2013.

B. Viollet, Y. Athea, R. Mounier, B. Guigas, E. Zarrinpashneh et al., AMPK: lessons from transgenic and knockout animals, Front. Biosci. (Landmark Ed.), vol.14, pp.19-44, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00367498

M. Ost, F. Werner, J. Dokas, S. Klaus, and A. Voigt, Activation of AMPKa2 is not crucial for mitochondrial uncouplinginduced metabolic effects but required to maintain skeletal muscle integrity, PLoS One, vol.9, p.94689, 2014.

R. S. Lee-young, J. E. Ayala, P. T. Fueger, W. H. Mayes, L. Kang et al., Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPKa2 in the regulation of exercise capacity in vivo, Int. J. Obes, vol.35, pp.982-989, 2011.

N. Fujii, M. M. Seifert, E. M. Kane, L. E. Peter, R. C. Ho et al., Role of AMPactivated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle: insight from analysis of a transgenic mouse model, Diabetes Res. Clin. Pract, vol.77, issue.1, pp.92-98, 2007.