N. Bolli, H. Avet-loiseau, D. C. Wedge, P. Van-loo, L. B. Alexandrov et al., Heterogeneity of genomic evolution and mutational profiles in multiple myeloma, Nat Commun, vol.5, p.2997, 2014.

J. S. Mitchell, N. Li, N. Weinhold, A. Forsti, M. Ali et al., Genome-wide association study identifies multiple susceptibility loci for multiple myeloma, Nat Commun, vol.7, p.12050, 2016.

M. Marchesini, Y. Ogoti, E. Fiorini, A. Samur, A. Nezi et al., ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma, Cancer Cell, vol.32, pp.88-100, 2017.

M. Went, A. Sud, A. Forsti, B. M. Halvarsson, N. Weinhold et al., Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma, Nat Commun, vol.9, p.3707, 2018.

S. Robiou-du-pont, A. Cleynen, C. Fontan, M. Attal, N. Munshi et al., Genomics of multiple myeloma, J Clin Oncol, vol.35, pp.963-970, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01813387

S. K. Kumar, V. Rajkumar, R. A. Kyle, M. Van-duin, P. Sonneveld et al., Multiple myeloma, Nat Rev Dis Prim, vol.3, p.17046, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01631468

T. Treiber, N. Treiber, and G. Meister, Regulation of microRNA biogenesis and its crosstalk with other cellular pathways, Nat Rev Mol Cell Biol, vol.20, pp.5-20, 2019.

C. M. Croce, Causes and consequences of microRNA dysregulation in cancer, Nat Rev Genet, vol.10, pp.704-718, 2009.

C. M. Croce, MicroRNA dysregulation to identify novel therapeutic targets, Curr Top Microbiol Immunol, vol.407, pp.191-203, 2017.

D. Leva, G. Croce, and C. M. , Roles of small RNAs in tumor formation, Trends Mol Med, vol.16, pp.257-67, 2010.

Y. Zhou, L. Chen, B. Barlogie, O. Stephens, X. Wu et al., High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2, Proc Natl Acad Sci, vol.107, pp.7904-7913, 2010.

F. Pichiorri, S. S. Suh, M. Ladetto, M. Kuehl, T. Palumbo et al., MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis, Proc Natl Acad Sci, vol.105, pp.12885-90, 2008.

A. M. Roccaro, A. Sacco, B. Thompson, X. Leleu, A. K. Azab et al., MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma, Blood, vol.113, pp.6669-80, 2009.

M. T. Le, C. Teh, N. Shyh-chang, H. Xie, B. Zhou et al., MicroRNA-125b is a novel negative regulator of p53, Genes Dev, vol.23, pp.862-76, 2009.

M. Y. Murray, S. A. Rushworth, L. Zaitseva, K. M. Bowles, and D. J. Macewan, Attenuation of dexamethasone-induced cell death in multiple myeloma is mediated by miR-125b expression, Cell Cycle, vol.12, pp.2144-53, 2013.

D. Martino, M. T. , L. E. Amodio, N. Foresta, U. Lionetti et al., Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence, Clin Cancer Res, vol.18, pp.6260-70, 2012.

G. T. Bommer, I. Gerin, Y. Feng, A. J. Kaczorowski, R. Kuick et al., p53-mediated activation of miRNA34 candidate tumorsuppressor genes, Curr Biol, vol.17, pp.1298-307, 2007.

C. J. Braun, X. Zhang, I. Savelyeva, S. Wolff, U. M. Moll et al., p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest, Cancer Res, vol.68, pp.10094-104, 2008.

F. Pichiorri, S. S. Suh, A. Rocci, L. De-luca, C. Taccioli et al., Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development, Cancer Cell, vol.30, pp.349-51, 2016.

Y. Chiang, Y. Song, Z. Wang, Z. Liu, P. Gao et al., microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer, Exp Ther Med, vol.3, pp.560-566, 2012.

H. W. Khella, M. Bakhet, G. Allo, M. A. Jewett, A. H. Girgis et al., miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma, Carcinogenesis, vol.34, pp.2231-2240, 2013.

K. A. O'donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang, and J. T. Mendell, c-Myc-regulated microRNAs modulate E2F1 expression, Nature, vol.435, pp.839-882, 2005.

S. Manier, J. T. Powers, A. Sacco, S. V. Glavey, D. Huynh et al., The LIN28B/let-7 axis is a novel therapeutic pathway in multiple myeloma, Leukemia, vol.31, pp.853-60, 2017.

N. Mimura, M. Fulciniti, G. Gorgun, Y. T. Tai, D. Cirstea et al., Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma, Blood, vol.119, pp.5772-81, 2012.

R. Szalat, H. Avet-loiseau, and N. C. Munshi, Gene expression profiles in myeloma: ready for the real world?, Clin Cancer Res, vol.22, pp.5434-5476, 2016.

J. J. Keats, C. A. Maxwell, B. J. Taylor, M. J. Hendzel, M. Chesi et al., Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16; q32)-positive multiple myeloma patients, Blood, vol.105, pp.4060-4069, 2005.

S. Adamia, T. Reiman, M. Crainie, M. J. Mant, A. R. Belch et al., Intronic splicing of hyaluronan synthase 1 (HAS1): a biologically relevant indicator of poor outcome in multiple myeloma, Blood, vol.105, pp.4836-4880, 2005.

J. Kriangkum, A. Warkentin, A. R. Belch, and L. M. Pilarski, Alteration of introns in a hyaluronan synthase 1 (HAS1) minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM): MM patients harbor similar changes, PLoS ONE, vol.8, p.53469, 2013.

S. Adamia, J. Kriangkum, A. R. Belch, and L. M. Pilarski, Aberrant posttranscriptional processing of hyaluronan synthase 1 in malignant transformation and tumor progression, Adv cancer Res, vol.123, pp.67-94, 2014.

D. R. Carrasco, K. Sukhdeo, M. Protopopova, R. Sinha, M. Enos et al., The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis, Cancer Cell, vol.11, pp.349-60, 2007.

J. J. Keats, T. Reiman, C. A. Maxwell, B. J. Taylor, L. M. Larratt et al., In multiple myeloma, t(4;14)(p16; q32) is an adverse prognostic factor irrespective of FGFR3 expression, Blood, vol.101, pp.1520-1529, 2003.

A. M. Dring, F. E. Davies, J. A. Fenton, P. L. Roddam, K. Scott et al., A global expression-based analysis of the consequences of the t(4;14) translocation in myeloma, Clin Cancer Res, vol.10, pp.5692-701, 2004.

M. Chesi, E. Nardini, R. S. Lim, K. D. Smith, W. M. Kuehl et al., The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts, Blood, vol.92, pp.3025-3059, 1998.

C. A. Maxwell, E. Rasmussen, F. Zhan, J. J. Keats, S. Adamia et al., RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma, Blood, vol.104, pp.1151-1159, 2004.

N. Rashid, S. M. , M. Florence, S. Mehmetkemal, C. Alice et al., Alternative Splicing Is a Frequent Event and Impacts Clinical Outcome in Myeloma: A Large RNA-Seq Data Analysis of Newly-Diagnosed Myeloma Patients, Blood, vol.124, p.638, 2014.

A. A. Samur, M. K. Samur, S. Minvielle, F. Magrangeas, M. Fulciniti et al., A detailed alternate splicing landscape in multiple myeloma with significant potential biological and clinical implications, Blood, vol.128, p.356, 2016.

N. C. Munshi and H. Avet-loiseau, Genomics in multiple myeloma, Clin Cancer Res, vol.17, pp.1234-1276, 2011.

I. S. Vlachos, K. Zagganas, M. D. Paraskevopoulou, G. Georgakilas, D. Karagkouni et al., DIANA-miRPathv3.0: deciphering microRNA function with experimental support, Nucleic Acids Res, vol.43, issue.W1, pp.460-466, 2015.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res, vol.37, pp.1-13, 2009.

A. G. Jacob and C. Smith, Intron retention as a component of regulated gene expression programs, Hum Genet, vol.136, pp.1043-57, 2017.

V. Markovtsov, J. M. Nikolic, J. A. Goldman, C. W. Turck, M. Y. Chou et al., Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein, Mol Cell Biol, vol.20, pp.7463-79, 2000.

F. Robinson, R. J. Jackson, and C. W. Smith, Expression of human nPTB is limited by extreme suboptimal codon content, PLoS ONE, vol.3, p.1801, 2008.

D. Caracciolo, M. Montesano, E. Altomare, F. Scionti, D. Martino et al., The potential role of miRNAs in multiple myeloma therapy, Expert Rev Hematol, vol.11, pp.793-803, 2018.

A. Macauda, D. Calvetti, G. Maccari, K. Hemminki, A. Forsti et al., Identification of miRSNPs associated with the risk of multiple myeloma, Int J Cancer, vol.140, pp.526-560, 2017.

T. A. Farazi, J. I. Hoell, P. Morozov, and T. Tuschl, MicroRNAs in human cancer, Adv Exp Med Biol, vol.774, pp.1-20, 2013.

Y. Shi, Mechanistic insights into precursor messenger RNA splicing by the spliceosome, Nat Rev Mol Cell Biol, vol.18, pp.655-70, 2017.

S. M. Fica and K. Nagai, Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine, Nat Struct Mol Biol, vol.24, pp.791-800, 2017.

L. Herzel, D. Ottoz, T. Alpert, and K. M. Neugebauer, Splicing and transcription touch base: co-transcriptional spliceosome assembly and function, Nat Rev Mol Cell Biol, vol.18, pp.637-50, 2017.

Z. Wang and C. B. Burge, Splicing regulation: from a parts list of regulatory elements to an integrated splicing code, RNA, vol.14, pp.802-815, 2008.

L. Y. Tan, P. Whitfield, M. Llorian, E. Monzon-casanova, M. D. Diaz-munoz et al., Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation, Nucleic Acids Res, vol.43, pp.5586-600, 2015.

H. Min, C. W. Turck, J. M. Nikolic, and D. L. Black, A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer, Genes Dev, vol.11, pp.1023-1059, 1997.

M. Trabucchi, P. Briata, M. Garcia-mayoral, A. D. Haase, W. Filipowicz et al., The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs, Nature, vol.459, pp.1010-1014, 2009.

S. Jimeno-gonzalez and J. C. Reyes, Chromatin structure and pre-mRNA processing work together, Transcription, vol.7, pp.63-71, 2016.