R. D. Terry, Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol, vol.30, pp.572-580, 1991.

S. T. Dekosky and S. W. Scheff, Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity, Ann. Neurol, vol.27, pp.457-464, 1990.

M. C. De-wilde, C. R. Overk, J. W. Sijben, and E. Masliah, Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability, Alzheimers Dement, vol.12, pp.633-644, 2016.

D. Baglietto-vargas, Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease, Aging Cell, vol.17, p.12791, 2018.

M. K. Chen, Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging, JAMA Neurol, vol.75, pp.1215-1224, 2018.

D. Attwell and S. B. Laughlin, An energy budget for signaling in the grey matter of the brain, J. Cereb. Blood Flow Metab, vol.21, pp.1133-1145, 2001.

J. J. Harris, R. Jolivet, and D. Attwell, Synaptic energy use and supply, Neuron, vol.75, pp.762-777, 2012.

V. Rangaraju, N. Calloway, and T. A. Ryan, Activity-driven local ATP synthesis is required for synaptic function, Cell, vol.156, pp.825-835, 2014.

D. Pathak, The role of mitochondrially derived ATP in synaptic vesicle recycling, J. Biol. Chem, vol.290, pp.22325-22336, 2015.

C. Marinangeli, AMP-activated protein kinase is essential for the maintenance of energy levels during synaptic activation, 2018.

S. P. Caminiti, FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuro-Image Clin, vol.18, pp.167-177, 2018.

A. M. Turnley, Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system, J. Neurochem, vol.72, pp.1707-1716, 1999.

D. Carling, The AMP-activated protein kinase cascade-a unifying system for energy control, Trends Biochem. Sci, vol.29, pp.18-24, 2004.

D. F. Egan, Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy, Science, vol.331, pp.456-461, 2011.

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat. Cell Biol, vol.13, pp.132-141, 2011.

Y. Rabanal-ruiz, E. G. Otten, and . Korolchuk, V. I. mTORC1 as the main gateway to autophagy, Essays Biochem, vol.61, pp.565-584, 2017.

V. Vingtdeux, P. Davies, D. W. Dickson, and P. Marambaud, AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies, Acta Neuropathol, vol.121, pp.337-349, 2011.

C. Marinangeli, S. Didier, and V. Vingtdeux, AMPK in neurodegenerative diseases: implications and therapeutic perspectives, Curr. Drug Targets, vol.17, pp.890-907, 2016.

V. Vingtdeux, AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism, J. Biol. Chem, vol.285, pp.9100-9113, 2010.

V. Vingtdeux, Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation, FASEB J, vol.25, pp.219-231, 2011.

C. Thornton, N. J. Bright, M. Sastre, P. J. Muckett, and D. Carling, AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid betapeptide exposure, Biochem. J, vol.434, pp.503-512, 2011.

M. Domise, AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo, Sci. Rep, vol.6, p.26758, 2016.

G. Mairet-coello, The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation, Neuron, vol.78, pp.94-108, 2013.

J. Brouillette, Neurotoxicity and memory deficits induced by soluble lowmolecular-weight amyloid-beta1-42 oligomers are revealed in vivo by using a novel animal model, J. Neurosci, vol.32, pp.7852-7861, 2012.

R. Caillierez, Lentiviral delivery of the human wild-type tau protein mediates a slow and progressive neurodegenerative tau pathology in the rat brain, Mol. Ther, vol.21, pp.1358-1368, 2013.

I. Tanida, T. Ueno, and Y. Uchiyama, A super-ecliptic, pHluorin-mKate2, tandem fluorescent protein-tagged human LC3 for the monitoring of mammalian autophagy, PLoS ONE, vol.9, p.110600, 2014.

D. M. Ippolito and C. Eroglu, Quantifying synapses: an immunocytochemistrybased assay to quantify synapse number, J. Vis. Exp, 2010.

M. L. Frandemiche, Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers, J. Neurosci, vol.34, pp.6084-6097, 2014.

G. W. Gross, E. Rieske, G. W. Kreutzberg, and A. Meyer, A new fixed-array multimicroelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro, Neurosci. Lett, vol.6, pp.101-105, 1977.

T. Williams, J. Courchet, B. Viollet, J. E. Brenman, and F. Polleux, AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress, Proc. Natl Acad. Sci. USA, vol.108, pp.5849-5854, 2011.

S. Amato, AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization, Science, vol.332, pp.247-251, 2011.

C. Eroglu, Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis, Cell, vol.139, pp.380-392, 2009.

L. Chen, AMPK activation by GSK621 inhibits human melanoma cells in vitro and in vivo, Biochem. Biophys. Res. Commun, vol.480, pp.515-521, 2016.

P. Sujobert, Co-activation of AMPK and mTORC1 induces cytotoxicity in acute myeloid leukemia, Cell Rep, vol.11, pp.1446-1457, 2015.

M. Jang, AMPK contributes to autophagosome maturation and lysosomal fusion, Sci. Rep, vol.8, p.12637, 2018.

M. Shehata, H. Matsumura, R. Okubo-suzuki, N. Ohkawa, and K. Inokuchi, Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. The, J. Neurosci, vol.32, pp.10413-10422, 2012.

G. Tang, Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits, Neuron, vol.83, pp.1131-1143, 2014.

M. Komatsu, Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration, Proc. Natl Acad. Sci. USA, vol.104, pp.14489-14494, 2007.

D. Hernandez, Regulation of presynaptic neurotransmission by macroautophagy, Neuron, vol.74, pp.277-284, 2012.

V. Kirkin, D. G. Mcewan, I. Novak, and I. Dikic, A role for ubiquitin in selective autophagy, Mol. Cell, vol.34, pp.259-269, 2009.

Y. T. Kwon and A. Ciechanover, The ubiquitin code in the ubiquitin-proteasome system and autophagy, Trends Biochem. Sci, vol.42, pp.873-886, 2017.

V. Cohen-kaplan, I. Livneh, N. Avni, C. Cohen-rosenzweig, and A. Ciechanover, The ubiquitin-proteasome system and autophagy: coordinated and independent activities, Int. J. Biochem. Cell Biol, vol.79, pp.403-418, 2016.

Q. Ma, Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity, Proc. Natl Acad. Sci. USA, vol.114, pp.8760-8769, 2017.

L. A. Schwarz, B. J. Hall, and G. N. Patrick, Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway, J. Neurosci, vol.30, pp.16718-16729, 2010.

H. Cheong, T. Lindsten, J. Wu, C. Lu, and C. B. Thompson, Ammonia-induced autophagy is independent of ULK1/ULK2 kinases, Proc. Natl Acad. Sci. USA, vol.108, pp.11121-11126, 2011.

N. D. Okerlund, Bassoon controls presynaptic autophagy through Atg5, Neuron, vol.93, p.7, 2017.

P. Luningschror, Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease, Nat. Commun, vol.8, p.678, 2017.

V. Nikoletopoulou, K. Sidiropoulou, E. Kallergi, Y. Dalezios, and N. Tavernarakis, Modulation of autophagy by BDNF underlies synaptic plasticity, Cell Metab, vol.26, p.5, 2017.

M. Shehata, Autophagy enhances memory erasure through synaptic destabilization, J. Neurosci, vol.38, pp.3809-3822, 2018.

W. B. Potter, Metabolic regulation of neuronal plasticity by the energy sensor AMPK, PLoS ONE, vol.5, p.8996, 2010.

T. Ma, Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid beta, J. Neurosci, vol.34, pp.12230-12238, 2014.

P. K. Dash, S. A. Orsi, and A. N. Moore, Spatial memory formation and memoryenhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway, J. Neurosci, vol.26, pp.8048-8056, 2006.

Y. Han, AMPK signaling in the dorsal hippocampus negatively regulates contextual fear memory formation, Neuropsychopharmacology, vol.41, pp.1849-1864, 2016.

R. Singh and A. M. Cuervo, Autophagy in the cellular energetic balance, Cell Metab, vol.13, pp.495-504, 2011.

W. Wang, X. Yang, I. Lopez-de-silanes, D. Carling, and M. Gorospe, AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function, J. Biol. Chem, vol.278, pp.27016-27023, 2003.

W. Zwerschke, Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence, Biochem. J, vol.376, pp.403-411, 2003.

Y. Zu, SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells, Circ. Res, vol.106, pp.1384-1393, 2010.

D. Jurk, Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response, Aging Cell, vol.11, pp.996-1004, 2012.

N. Musi, Tau protein aggregation is associated with cellular senescence in the brain, Aging Cell, vol.17, p.12840, 2018.

T. J. Bussian, Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline, Nature, vol.562, pp.578-582, 2018.