S. Abounit, J. W. Wu, K. Duff, G. S. Victoria, and C. Zurzolo, Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases, Prion, vol.10, p.3, 2016.

M. Albert, G. Mairet-coello, C. Danis, S. Lieger, R. Caillierez et al., Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody, Brain, vol.142, pp.1736-1750, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02348408

M. Allen, X. Wang, D. J. Serie, S. L. Strickland, J. D. Burgess et al., Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy, Acta Neuropathol, vol.136, pp.709-727, 2018.

C. R. Andersson, J. Falsig, J. B. Stavenhagen, S. Christensen, F. Kartberg et al., Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcgammareceptor binding and functional lysosomes, Sci Rep, vol.9, p.4658, 2019.

A. Andreadis, Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases, Biochim Biophys Acta, vol.1739, pp.91-103, 2005.

H. Asai, S. Ikezu, S. Tsunoda, M. Medalla, J. Luebke et al., Depletion of microglia and inhibition of exosome synthesis halt tau propagation, Nat Neurosci, vol.18, pp.1584-1593, 2015.

A. A. Asuni, A. Boutajangout, D. Quartermain, and E. M. Sigurdsson, Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements, J Neurosci, vol.27, pp.9115-9129, 2007.

G. Ayalon, Preclinical, characterization, efficacy, pharmacokinetics and pharmacodynamics and safety of RO7105705-An anti-tau antibody currently in clinical development for Alzheimer disease, AD/PD 2017-the 13th international conference on Alzheimer's and Parkinson's disease, 2017.

S. Baker, J. C. Polanco, and J. Gotz, Extracellular vesicles containing P301L mutant tau accelerate pathological tau phosphorylation and oligomer formation but do not seed mature neurofibrillary tangles in ALZ17 mice, J Alzheimers Dis, vol.54, pp.1207-1217, 2016.

C. Bancher, C. Brunner, H. Lassmann, H. Budka, K. Jellinger et al., Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease, Brain Res, vol.477, pp.91396-91402, 1989.

W. A. Banks, A. Kovac, P. Majerova, K. M. Bullock, M. Shi et al., Tau proteins cross the blood-brain barrier, J Alzheimers Dis, vol.55, pp.411-419, 2017.

S. Barghorn, Q. Zheng-fischhofer, M. Ackmann, J. Biernat, M. Von-bergen et al., Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias, Biochemistry, vol.39, pp.11714-11721, 2000.

N. R. Barthelemy, F. Fenaille, C. Hirtz, N. Sergeant, S. Schraen-maschke et al., Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity, J Proteome Res, vol.15, pp.667-676, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01842426

N. R. Barthelemy, A. Gabelle, C. Hirtz, F. Fenaille, N. Sergeant et al., Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer's disease, progressive supranuclear palsy, and dementia with lewy bodies, J Alzheimers Dis, vol.51, pp.1033-1043, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01842422

H. Benhelli-mokrani, Z. Mansuroglu, A. Chauderlier, B. Albaud, D. Gentien et al., Genome-wide identification of genic and intergenic neuronal DNA regions bound by Tau protein under physiological and stress conditions, Nucleic Acids Res, vol.46, pp.11405-11422, 2018.

B. Borroni, F. Gardoni, L. Parnetti, L. Magno, M. Malinverno et al., Pattern of Tau forms in CSF is altered in progressive supranuclear palsy, Neurobiol Aging, vol.30, pp.34-40, 2009.

A. Boutajangout, J. Ingadottir, P. Davies, and E. M. Sigurdsson, Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain, J Neurochem, vol.118, pp.658-667, 2011.

A. L. Boxer, I. Qureshi, M. Ahlijanian, M. Grundman, L. I. Golbe et al., Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial, Lancet Neurol, vol.18, issue.19, pp.30139-30144, 2019.

H. Braak and E. Braak, Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis, Acta Neuropathol, vol.92, pp.197-201, 1996.

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol, vol.82, pp.239-259, 1991.

H. Braak, D. Tredici, and K. , Alzheimer's disease: pathogenesis and prevention, Alzheimers Dement, vol.8, pp.227-233, 2011.

H. Braak, D. Tredici, and K. , Evolutional aspects of Alzheimer's disease pathogenesis, J Alzheimers Dis, vol.33, issue.1, pp.155-161, 2013.

R. Brandt, J. Leger, and G. Lee, Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain, J Cell Biol, vol.131, pp.1327-1340, 1995.

M. Brendel, S. Schonecker, G. Hoglinger, S. Lindner, J. Havla et al., )F]-THK5351 PET correlates with topology and symptom severity in progressive supranuclear palsy, Front Aging Neurosci, vol.9, issue.18, p.440, 2017.

J. Bright, S. Hussain, V. Dang, S. Wright, B. Cooper et al., Human secreted tau increases amyloid-beta production, Neurobiol Aging, vol.36, pp.693-709, 2015.

P. Bruhns, B. Iannascoli, P. England, D. A. Mancardi, N. Fernandez et al., Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses, Blood, vol.113, pp.3716-3725, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00363931

L. Buee, T. Bussiere, V. Buee-scherrer, A. Delacourte, and P. R. Hof, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders, Brain Res Brain Res Rev, vol.33, pp.95-130, 2000.

L. Buee, L. Troquier, S. Burnouf, K. Belarbi, A. Van-der-jeugd et al., From tau phosphorylation to tau aggregation: what about neuronal death?, Biochem Soc Trans, vol.38, pp.967-972, 2010.

S. Burnouf, A. Martire, M. Derisbourg, C. Laurent, K. Belarbi et al., NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factorinduced facilitation of hippocampal synaptic transmission in a Tau transgenic model, Aging Cell, vol.12, pp.11-23, 2013.

R. Caillierez, S. Begard, K. Lecolle, V. Deramecourt, N. Zommer et al., Lentiviral delivery of the human wildtype tau protein mediates a slow and progressive neurodegenerative tau pathology in the rat brain, Mol Ther, vol.21, pp.1358-1368, 2013.

S. Calafate, A. Buist, K. Miskiewicz, V. Vijayan, G. Daneels et al., Synaptic contacts enhance cell-to-cell tau pathology propagation, Cell Rep, vol.11, pp.1176-1183, 2015.

S. Calafate, W. Flavin, P. Verstreken, and D. Moechars, Loss of Bin1 promotes the propagation of tau pathology, Cell Rep, vol.17, pp.931-940, 2016.

D. L. Castillo-carranza, M. J. Guerrero-munoz, U. Sengupta, C. Hernandez, A. D. Barrett et al., Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimer's disease mouse model, J Neurosci, vol.35, pp.4857-4868, 2015.

D. L. Castillo-carranza, U. Sengupta, M. J. Guerrero-munoz, C. A. Lasagna-reeves, J. E. Gerson et al., Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles, J Neurosci, vol.34, pp.4260-4272, 2014.

X. Chai, S. Wu, T. K. Murray, R. Kinley, C. V. Cella et al., Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression, J Biol Chem, vol.286, pp.34457-34467, 2011.

, from experimental and human brain studies, Acta Neuropathol, vol.131, pp.5-25

L. D. Evans, T. Wassmer, G. Fraser, J. Smith, M. Perkinton et al., Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways, Cell Rep, vol.22, pp.3612-3624, 2018.

B. Falcon, W. Zhang, M. Schweighauser, A. G. Murzin, R. Vidal et al., Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold, Acta Neuropathol, vol.136, pp.699-708, 2018.

B. Falcon, J. Zivanov, W. Zhang, A. G. Murzin, H. J. Garringer et al., Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules, Nature, vol.568, pp.420-423, 2019.

P. Fernandez-vizarra, O. Lopez-franco, B. Mallavia, A. Higuera-matas, V. Lopez-parra et al., Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice, Brain, vol.135, pp.2826-2837, 2012.

M. S. Fiandaca, D. Kapogiannis, M. Mapstone, A. Boxer, E. Eitan et al., Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study, Alzheimers Dement, vol.11, p.601, 2015.

A. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer's disease, Nature, vol.547, pp.185-190, 2017.

M. S. Foiani, I. O. Woollacott, C. Heller, M. Bocchetta, A. Heslegrave et al., Plasma tau is increased in frontotemporal dementia, J Neurol Neurosurg Psychiatry, vol.89, pp.804-807, 2018.

S. L. Forrest, J. J. Kril, and G. M. Halliday, Cellular and regional vulnerability in frontotemporal tauopathies, Acta Neuropathol, 2019.

S. L. Forrest, J. J. Kril, and G. M. Halliday, Reply: Will FTLD-tau work for all when FTDP-17 retires, Brain, vol.141, 2018.

B. Frost, R. L. Jacks, and M. I. Diamond, Propagation of tau misfolding from the outside to the inside of a cell, J Biol Chem, vol.284, pp.12845-12852, 2009.

K. E. Funk, H. Mirbaha, H. Jiang, D. M. Holtzman, and M. I. Diamond, Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake, J Biol Chem, vol.290, pp.21652-21662, 2015.

P. Gallo, F. Bracco, S. Morara, L. Battistin, and B. Tavolato, The cerebrospinal fluid transferrin/tau proteins. A study by twodimensional polyacrylamide gel electrophoresis (2D) and agarose isoelectrofocusing (IEF) followed by double-antibody peroxidase labeling and avidin-biotin amplification, J Neurol Sci, vol.70, pp.81-92, 1985.

S. D. Ginsberg, M. J. Alldred, S. E. Counts, A. M. Cataldo, R. L. Neve et al., Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression, Biol Psychiatry, vol.68, pp.885-893, 2010.

S. D. Ginsberg, E. J. Mufson, M. J. Alldred, S. E. Counts, J. Wuu et al., Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease, J Chem Neuroanat, vol.42, pp.102-110, 2011.

S. D. Ginsberg, E. J. Mufson, S. E. Counts, J. Wuu, M. J. Alldred et al., Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease, J Alzheimers Dis, vol.22, pp.631-639, 2010.

M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease, Neuron, vol.3, pp.519-526, 1989.

M. Goedert, M. G. Spillantini, M. C. Potier, J. Ulrich, and R. A. Crowther, Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain, EMBO J, vol.8, pp.393-399, 1989.

A. Gomez-ramos, M. Diaz-hernandez, A. Rubio, M. T. Miras-portugal, and J. Avila, Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, Mol Cell Neurosci, vol.37, pp.673-681, 2008.

D. Graham, C. Weiping, J. C. , A. C. Paul, W. Qin et al., In vivo demonstration than pan tau antibody, BIIB076, reduces free tau in cynomolgus monkey cerebrospinal fluid, AD/PD 2017, the 13th international conference on Alzheimer's & Parkinson's diseases, 2017.

F. X. Guix, G. T. Corbett, D. J. Cha, M. Mustapic, W. Liu et al., Detection of aggregation-competent tau in neuron-derived extracellular vesicles, Int J Mol Sci, 2018.

J. L. Guo and V. M. Lee, Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles, J Biol Chem, vol.286, pp.15317-15331, 2011.

T. Guo, W. Noble, and D. P. Hanger, Roles of tau protein in health and disease, Acta Neuropathol, vol.133, pp.665-704, 2017.

K. Hanisch, H. Soininen, I. Alafuzoff, and R. Hoffmann, Analysis of human tau in cerebrospinal fluid, J Proteome Res, vol.9, pp.1476-1482, 2010.

L. Hillered, L. Persson, P. Nilsson, E. Ronne-engstrom, and P. Enblad, Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis, Curr Opin Crit Care, vol.12, pp.112-118, 2006.

A. Himmler, D. Drechsel, M. W. Kirschner, and D. W. Martin, Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains, Mol Cell Biol, vol.9, pp.1381-1388, 1989.

M. C. Hoenig, G. N. Bischof, J. Seemiller, J. Hammes, J. Kukolja et al., Networks of tau distribution in Alzheimer's disease, Brain, vol.141, pp.568-581, 2018.

P. R. Hof and J. H. Morrison, Hippocampal and neocortical involvement in normal brain aging and dementia: morphological and neurochemical profile of the vulnerable circuits, J Am Geriatr Soc, vol.44, pp.857-864, 1996.

B. B. Holmes, S. L. Devos, N. Kfoury, M. Li, R. Jacks et al., Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds, Proc Natl Acad Sci, vol.110, pp.3138-3147, 2013.

B. B. Holmes, J. L. Furman, T. E. Mahan, T. R. Yamasaki, H. Mirbaha et al., Proteopathic tau seeding predicts tauopathy in vivo, Proc Natl Acad Sci, vol.111, pp.4376-4385, 2014.

J. J. Iliff, M. J. Chen, B. A. Plog, D. M. Zeppenfeld, M. Soltero et al., Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury, J Neurosci, vol.34, pp.16180-16193, 2014.

D. J. Irwin, J. Brettschneider, C. T. Mcmillan, F. Cooper, C. Olm et al., Deep clinical and neuropathological phenotyping of Pick disease, Ann Neurol, vol.79, pp.272-287, 2016.

D. J. Irwin, V. M. Lee, and J. Q. Trojanowski, Parkinson's disease dementia: convergence of alpha-synuclein, tau and amyloidbeta pathologies, Nat Rev Neurosci, vol.14, pp.626-636, 2013.

C. Ising, G. Gallardo, C. Leyns, C. H. Wong, H. Jiang et al., AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy, J Exp Med, vol.214, pp.1227-1238, 2017.

L. M. Ittner, Y. D. Ke, F. Delerue, M. Bi, A. Gladbach et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models, Cell, vol.142, pp.387-397, 2010.

S. Jadhav, J. Avila, M. Scholl, G. G. Kovacs, E. Kovari et al., A walk through tau therapeutic strategies, Acta Neuropathol Commun, vol.7, 2019.

G. A. Jicha, R. Bowser, I. G. Kazam, and P. Davies, Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau, J Neurosci Res, vol.48, pp.128-132, 1997.

M. Jucker and L. C. Walker, Self-propagation of pathogenic protein aggregates in neurodegenerative diseases, Nature, vol.501, pp.45-51, 2013.

T. Katsinelos, M. Zeitler, E. Dimou, A. Karakatsani, H. M. Muller et al., Unconventional secretion mediates the trans-cellular spreading of tau, Cell Rep, vol.23, pp.2039-2055, 2018.

S. K. Kaufman and M. I. Diamond, Prion-like propagation of protein aggregation and related therapeutic strategies, Neurotherapeutics, vol.10, pp.371-382, 2013.

S. K. Kaufman, D. W. Sanders, T. L. Thomas, A. J. Ruchinskas, J. Vaquer-alicea et al., Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo, Neuron, vol.92, pp.796-812, 2016.

N. Kfoury, B. B. Holmes, H. Jiang, D. M. Holtzman, and M. I. Diamond, Trans-cellular propagation of tau aggregation by fibrillar species, J Biol Chem, vol.287, pp.19440-19451, 2012.

H. C. Kolb, G. Triana-baltzer, J. R. Slemmon, J. Pharmaceutical, and N. V. , Assays to detect neurodegeneration. United States Patent Application, 2019.

G. G. Kovacs, Invited review: neuropathology of tauopathies: principles and practice, Neuropathol Appl Neurobiol, vol.41, pp.3-23, 2015.

G. G. Kovacs, S. X. Xie, J. L. Robinson, E. B. Lee, D. H. Smith et al., Sequential stages and distribution patterns of agingrelated tau astrogliopathy (ARTAG) in the human brain, Acta Neuropathol Commun, vol.6, p.50, 2018.

T. Lebouvier, F. Pasquier, and L. Buee, Update on tauopathies, Curr Opin Neurol, vol.30, pp.589-598, 2017.

S. H. Lee, L. Pichon, C. E. Adolfsson, O. Gafner, V. Pihlgren et al., Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement, Cell Rep, vol.16, pp.1690-1700, 2016.

A. Leuzy, K. Chiotis, L. Lemoine, P. G. Gillberg, O. Almkvist et al., Tau PET imaging in neurodegenerative tauopathies-still a challenge, Mol Psychiatry, vol.24, pp.1112-1134, 2019.

J. Lewis and D. W. Dickson, Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies, Acta Neuropathol, vol.131, pp.27-48, 2016.

S. A. Lewis, D. H. Wang, and N. J. Cowan, Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein, Science, vol.242, pp.936-939, 1988.

C. H. Lin, S. Y. Yang, H. E. Horng, C. C. Yang, J. J. Chieh et al., Plasma biomarkers differentiate Parkinson's disease from atypical Parkinsonism syndromes, Front Aging Neurosci, vol.10, p.123, 2018.

L. Liu, V. Drouet, J. W. Wu, M. P. Witter, S. A. Small et al., Trans-synaptic spread of tau pathology in vivo, PLoS ONE, vol.7, 2012.

P. A. Loomis, T. H. Howard, R. P. Castleberry, and L. I. Binder, Identification of nuclear tau isoforms in human neuroblastoma cells, Proc Natl Acad Sci, vol.87, pp.8422-8426, 1990.

L. F. Lue, M. N. Sabbagh, M. J. Chiu, N. Jing, N. L. Snyder et al., Plasma levels of Abeta42 and tau identified probable Alzheimer's dementia: findings in two cohorts, Front Aging Neurosci, vol.9, p.226, 2017.

S. M. Man and T. D. Kanneganti, Regulation of inflammasome activation, Immunol Rev, vol.265, pp.6-21, 2015.

Z. Mansuroglu, H. Benhelli-mokrani, V. Marcato, A. Sultan, M. Violet et al., Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin, Sci Rep, vol.6, p.33047, 2016.

E. Marciniak, A. Leboucher, E. Caron, T. Ahmed, A. Tailleux et al., Tau deletion promotes brain insulin resistance, J Exp Med, vol.214, pp.2257-2269, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01833342

H. Martini-stoica, A. L. Cole, D. B. Swartzlander, F. Chen, Y. W. Wan et al., TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading, J Exp Med, vol.215, pp.2355-2377, 2018.

N. Mattsson, H. Zetterberg, O. Hansson, N. Andreasen, L. Parnetti et al., CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment, JAMA, vol.302, pp.385-393, 2009.

N. Mattsson, H. Zetterberg, S. Janelidze, P. S. Insel, U. Andreasson et al., Plasma tau in Alzheimer disease. Neurology, vol.87, pp.1827-1835, 2016.

M. Merezhko, C. A. Brunello, X. Yan, H. Vihinen, E. Jokitalo et al., Secretion of tau via an unconventional non-vesicular mechanism, Cell Rep, vol.25, p.78, 2018.

M. M. Mielke, C. E. Hagen, A. Wennberg, D. C. Airey, R. Savica et al., Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the Mayo Clinic study on aging, JAMA Neurol, vol.74, pp.1073-1080, 2017.

M. M. Mielke, C. E. Hagen, J. Xu, X. Chai, P. Vemuri et al., Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau-and amyloidpositron emission tomography, Alzheimers Dement, vol.14, pp.989-997, 2018.

N. V. Mohamed, A. Desjardins, and N. Leclerc, Tau secretion is correlated to an increase of Golgi dynamics, PLoS ONE, vol.12, 2017.

S. Mondragon-rodriguez, E. Trillaud-doppia, A. Dudilot, C. Bourgeois, M. Lauzon et al., Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyld-aspartate receptor-dependent tau phosphorylation, J Biol Chem, vol.287, pp.32040-32053, 2012.

A. Mudher, M. Colin, S. Dujardin, M. Medina, I. Dewachter et al., What is the evidence that tau pathology spreads through prion-like propagation?, Acta Neuropathol Commun, vol.5, p.99, 2017.

S. Muller, O. Preische, J. C. Gopfert, V. Yanez, T. O. Joos et al., Tau plasma levels in subjective cognitive decline: results from the DELCODE study, Sci Rep, vol.7, p.9529, 2017.

S. Narasimhan, J. L. Guo, L. Changolkar, A. Stieber, J. D. Mcbride et al., Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain, J Neurosci, vol.37, pp.11406-11423, 2017.

W. Noble, D. P. Hanger, C. C. Miller, and S. Lovestone, The importance of tau phosphorylation for neurodegenerative diseases, Front Neurol, vol.4, p.83, 2013.

C. K. Nobuhara, S. L. Devos, C. Commins, S. Wegmann, B. D. Moore et al., Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro, Am J Pathol, vol.187, pp.1399-1412, 2017.

T. Nonaka, S. T. Watanabe, T. Iwatsubo, and M. Hasegawa, Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases, J Biol Chem, vol.285, pp.34885-34898, 2010.

E. Okun, M. P. Mattson, and T. V. Arumugam, Involvement of Fc receptors in disorders of the central nervous system, Neuromol Med, vol.12, pp.164-178, 2010.

S. Pandya, C. Mezias, and A. Raj, Predictive model of spread of progressive supranuclear palsy using directional network diffusion, Front Neurol, vol.8, p.692, 2017.

M. P. Pase, A. S. Beiser, J. J. Himali, C. L. Satizabal, H. J. Aparicio et al., Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes, JAMA Neurol, vol.76, p.4666, 2018.

T. K. Patel, L. Habimana-griffin, X. Gao, B. Xu, S. Achilefu et al., Dural lymphatics regulate clearance of extracellular tau from the CNS, Mol Neurodegener, vol.14, p.11, 2019.

M. Perez, J. Avila, and F. Hernandez, Propagation of tau via extracellular vesicles, Front Neurosci, vol.13, p.698, 2019.

M. Perez, M. Medina, F. Hernandez, and J. Avila, Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro, Biomol Concepts, vol.9, pp.1-11, 2018.

C. Pernegre, A. Duquette, and N. Leclerc, Tau secretion: good and bad for neurons, Front Neurosci, vol.13, p.649, 2019.

J. C. Polanco, C. Li, N. Durisic, R. Sullivan, and J. Gotz, Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons, Acta Neuropathol Commun, vol.6, issue.10, 2018.

H. Qi, F. X. Cantrelle, H. Benhelli-mokrani, C. Smet-nocca, L. Buee et al., Nuclear magnetic resonance spectroscopy characterization of interaction of Tau with DNA and its regulation by phosphorylation, Biochemistry, vol.54, pp.1525-1533, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145987

S. I. Rapoport, Hypothesis: Alzheimer's disease is a phylogenetic disease, Med Hypotheses, vol.29, pp.147-150, 1989.

J. N. Rauch, J. J. Chen, A. W. Sorum, G. M. Miller, T. Sharf et al., Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs), 2018.

H. Reiber, Dynamics of brain-derived proteins in cerebrospinal fluid, Clin Chim Acta, vol.310, issue.01, pp.573-576, 2001.

P. Reilly, C. N. Winston, K. R. Baron, M. Trejo, E. M. Rockenstein et al., Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation, Neurobiol Dis, vol.106, pp.222-234, 2017.

L. Rodriguez, N. V. Mohamed, A. Desjardins, R. Lippe, E. A. Fon et al., Rab7A regulates tau secretion, J Neurochem, vol.141, pp.592-605, 2017.

M. B. Rogers, To block tau's proteopathic spread, antibody must attack its mid-region, vol.28, 2018.

T. Saito, N. Mihira, Y. Matsuba, H. Sasaguri, S. Hashimoto et al., Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation, J Biol Chem, vol.294, pp.12754-12765, 2019.

Y. Saito, N. N. Ruberu, M. Sawabe, T. Arai, N. Tanaka et al., Staging of argyrophilic grains: an age-associated tauopathy, J Neuropathol Exp Neurol, vol.63, pp.911-918, 2004.

S. Saman, W. Kim, M. Raya, Y. Visnick, S. Miro et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, J Biol Chem, vol.287, pp.3842-3849, 2012.

D. W. Sanders, S. K. Kaufman, S. L. Devos, A. M. Sharma, H. Mirbaha et al., Distinct tau prion strains propagate in cells and mice and define different tauopathies, Neuron, vol.82, pp.1271-1288, 2014.

S. Sankaranarayanan, D. M. Barten, L. Vana, N. Devidze, L. Yang et al., Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models, PLoS ONE, vol.10, 2015.

I. Santa-maria, M. Varghese, H. Ksiezak-reding, A. Dzhun, J. Wang et al., Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of tau protein in aggresomes, J Biol Chem, vol.287, pp.20522-20533, 2012.

C. R. Santos, A. C. Duarte, T. Quintela, J. Tomas, T. Albuquerque et al., The choroid plexus as a sex hormone target: Functional implications, Front Neuroendocrinol, vol.44, pp.103-121, 2017.

C. Sato, N. R. Barthelemy, K. G. Mawuenyega, B. W. Patterson, B. A. Gordon et al., Tau kinetics in neurons and the human central nervous system, Neuron, vol.97, p.1287, 2018.

C. L. Sayas, M. Medina, R. Cuadros, I. Olla, E. Garcia et al., Role of tau N-terminal motif in the secretion of human tau by end binding proteins, PLoS ONE, vol.14, 2019.

N. Sergeant, A. Bretteville, M. Hamdane, M. L. Caillet-boudin, P. Grognet et al., Biochemistry of Tau in, 2008.

, Alzheimer's disease and related neurological disorders, Expert Rev Proteom, vol.5, pp.207-224

A. N. Shrivastava, V. Redeker, L. Pieri, L. Bousset, M. Renner et al., Clustering of Tau fibrils impairs the synaptic composition of alpha3-Na(+)/K(+)-ATPase and AMPA receptors, EMBO J, 2019.

M. Sjogren, P. Davidsson, J. Gottfries, H. Vanderstichele, A. Edman et al., The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer's disease, reflecting a common pathophysiological process, Dement Geriatr Cogn Disord, vol.12, pp.257-264, 2001.

Z. Skachokova, A. Martinisi, M. Flach, F. Sprenger, Y. Naegelin et al., Cerebrospinal fluid from Alzheimer's disease patients promotes tau aggregation in transgenic mice, Acta Neuropathol Commun, vol.7, 2019.

I. Sotiropoulos, M. C. Galas, J. M. Silva, E. Skoulakis, S. Wegmann et al., Atypical, non-standard functions of the microtubule associated Tau protein, Acta Neuropathol Commun, vol.5, p.91, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01654098

M. G. Spillantini and M. Goedert, Tau pathology and neurodegeneration, Lancet Neurol, vol.12, issue.13, pp.70090-70095, 2013.

J. P. Steringer and W. Nickel, A direct gateway into the extracellular space: unconventional secretion of FGF2 through self-sustained plasma membrane pores, Semin Cell Dev Biol, vol.83, pp.3-7, 2018.

A. Stieber, Z. Mourelatos, and N. K. Gonatas, Alzheimer's disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic, Am J Pathol, vol.148, pp.415-426, 1996.

B. E. Stopschinski, B. B. Holmes, G. M. Miller, V. A. Manon, J. Vaquer-alicea et al., Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus alpha-synuclein and beta-amyloid aggregates, J Biol Chem, vol.293, pp.10826-10840, 2018.

A. Sultan, F. Nesslany, M. Violet, S. Begard, A. Loyens et al., Nuclear tau, a key player in neuronal DNA protection, J Biol Chem, vol.286, p.6, 2011.

M. Takahashi, H. Miyata, F. Kametani, T. Nonaka, H. Akiyama et al., Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau, Acta Neuropathol, vol.129, pp.895-907, 2015.

S. Takeda, C. Commins, S. L. Devos, C. K. Nobuhara, S. Wegmann et al., Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients, Ann Neurol, vol.80, pp.355-367, 2016.

S. Takeda, S. Wegmann, H. Cho, S. L. Devos, C. Commins et al., Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain, Nat Commun, vol.6, p.8490, 2015.

M. Tardivel, S. Begard, L. Bousset, S. Dujardin, A. Coens et al., Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies, Acta Neuropathol Commun, vol.4, p.117, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01391925

H. Tatebe, T. Kasai, T. Ohmichi, Y. Kishi, T. Kakeya et al., Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer's disease and down syndrome, Mol Neurodegener, vol.12, p.63, 2017.

G. C. Telling, P. Parchi, S. J. Dearmond, P. Cortelli, P. Montagna et al., Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity, Science, vol.274, pp.2079-2082, 1996.

L. Troquier, R. Caillierez, S. Burnouf, F. J. Fernandez-gomez, M. E. Grosjean et al., Targeting phospho-Ser422 by active Tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach, Curr Alzheimer Res, vol.9, pp.397-405, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00664452

T. Uchihara and B. I. Giasson, Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies, Acta Neuropathol, vol.131, pp.49-73, 2016.

T. Umeda, H. Eguchi, Y. Kunori, Y. Matsumoto, T. Taniguchi et al., Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice, Ann Clin Transl Neurol, vol.2, pp.241-255, 2015.

M. Vandermeeren, M. Borgers, K. Van-kolen, C. Theunis, B. Vasconcelos et al., Anti-tau monoclonal antibodies derived from soluble and filamentous tau show diverse functional properties in vitro and in vivo, J Alzheimers Dis, vol.65, pp.265-281, 2018.

M. Vandermeeren, M. Mercken, E. Vanmechelen, J. Six, A. Van-de-voorde et al., Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay, J Neurochem, vol.61, pp.1828-1834, 1993.

M. Verny, C. Duyckaerts, Y. Agid, and J. J. Hauw, The significance of cortical pathology in progressive supranuclear palsy. Clinico-pathological data in 10 cases, Brain, vol.119, pp.1123-1136, 1996.

M. Violet, A. Chauderlier, L. Delattre, M. Tardivel, M. S. Chouala et al., Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo, Neurobiol Dis, vol.82, pp.540-551, 2015.

M. Violet, L. Delattre, M. Tardivel, A. Sultan, A. Chauderlier et al., A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions, Front Cell Neurosci, vol.8, p.84, 2014.

L. J. Wang, H. Y. Huang, M. P. Huang, W. Liou, Y. T. Chang et al., The microtubule-associated protein EB1 links AIM2 inflammasomes with autophagy-dependent secretion, 2014.

, J Biol Chem, vol.289, pp.29322-29333

Y. Wang, V. Balaji, S. Kaniyappan, L. Kruger, S. Irsen et al., The release and trans-synaptic transmission of Tau via exosomes, Mol Neurodegener, vol.12, 2017.

S. Wegmann, R. E. Bennett, A. S. Amaral, and B. T. Hyman, Studying tau protein propagation and pathology in the mouse brain using adeno-associated viruses, Methods Cell Biol, vol.141, pp.307-322, 2017.

S. Wegmann, E. A. Maury, M. J. Kirk, L. Saqran, A. Roe et al., Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity, EMBO J, vol.34, pp.3028-3041, 2015.

P. Weisova, O. Cehlar, R. Skrabana, M. Zilkova, P. Filipcik et al., Therapeutic antibody targeting microtubulebinding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans, Acta Neuropathol Commun, vol.7, p.129, 2019.

D. R. Williams, J. L. Holton, C. Strand, A. Pittman, R. De-silva et al., Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome, Brain, vol.130, pp.1566-1576, 2007.

C. N. Winston, E. J. Goetzl, J. C. Akers, B. S. Carter, E. M. Rockenstein et al., Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile, Alzheimers Dement (Amst), vol.3, pp.63-72, 2016.

J. W. Wu, M. Herman, L. Liu, S. Simoes, C. M. Acker et al., Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons, J Biol Chem, vol.288, pp.1856-1870, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874385

K. Yamada, J. R. Cirrito, F. R. Stewart, H. Jiang, M. B. Finn et al., In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice, J Neurosci, vol.31, pp.13110-13117, 2011.

K. Yamada, T. K. Patel, K. Hochgrafe, T. E. Mahan, H. Jiang et al., Analysis of in vivo turnover of tau in a mouse model of tauopathy, Mol Neurodegener, vol.10, p.55, 2015.

K. Yanamandra, N. Kfoury, H. Jiang, T. E. Mahan, S. Ma et al., Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo, Neuron, vol.80, pp.402-414, 2013.

K. Yanamandra, T. K. Patel, H. Jiang, S. Schindler, J. D. Ulrich et al., Assay of plasma phosphorylated tau protein (Threonine 181) and total tau protein in early-stage Alzheimer's disease, J Alzheimers Dis, vol.61, pp.1323-1332, 2017.

S. Y. Yang, M. J. Chiu, T. F. Chen, C. H. Lin, J. S. Jeng et al., Analytical performance of reagent for assaying tau protein in human plasma and feasibility study screening neurodegenerative diseases, Sci Rep, vol.7, 2017.

M. J. Yetman, S. Lillehaug, J. G. Bjaalie, T. B. Leergaard, and J. L. Jankowsky, Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex, Brain Struct Funct, vol.221, pp.2231-2249, 2016.

F. P. Zemlan, J. J. Mulchahey, and G. A. Gudelsky, Quantification and localization of kainic acid-induced neurotoxicity employing a new biomarker of cell death: cleaved microtubule-associated protein-tau (C-tau), Neuroscience, vol.121, issue.03, pp.459-466, 2003.

H. Zetterberg, D. Wilson, U. Andreasson, L. Minthon, K. Blennow et al., Plasma tau levels in Alzheimer's disease, Alzheimers Res Ther, vol.5, p.9, 2013.

X. Zhang, Y. Lin, N. A. Eschmann, H. Zhou, J. N. Rauch et al., RNA stores tau reversibly in complex coacervates, PLoS Biol, vol.15, p.83, 2017.