G. Elliott, G. Mouzakitis, O. Hare, and P. , VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells, J Virol, vol.69, pp.7932-7941, 1995.

M. T. Sciortino, Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection, Proc Natl Acad Sci, vol.99, pp.8318-8323, 2002.

G. Elliott and P. O'hare, Intercellular trafficking and protein delivery by a herpesvirus structural protein, Cell, vol.88, pp.223-233, 1997.

A. Aints, M. S. Dilber, and C. I. Smith, Intercellular spread of GFP-VP22, J Gene Med, vol.1, pp.275-279, 1999.

N. Brewis, Evaluation of VP22 spread in tissue culture, J Virol, vol.74, pp.1051-1056, 2000.

G. Elliott and P. O'hare, Intercellular trafficking of VP22-GFP fusion proteins, Gene Ther, vol.6, pp.149-151, 1999.

W. A. Wybranietz, Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines, J Gene Med, vol.1, pp.265-274, 1999.

A. Phelan, G. Elliott, O. Hare, and P. , Intercellular delivery of functional p53 by the herpesvirus protein VP22, Nat Biotechnol, vol.16, pp.440-443, 1998.

. Antitumour and . Zavaglia,

K. N. Wills, Intratumoural spread and increased efficacy of a p53-VP22 fusion protein expressed by a recombinant adenovirus, J Virol, vol.75, pp.8733-8741, 2001.

M. S. Dilber, Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22, Gene Ther, vol.6, pp.12-21, 1999.

C. S. Liu, VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death, J Gene Med, vol.3, pp.145-152, 2001.

W. A. Wybranietz, Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene, Gene Ther, vol.8, pp.1654-1664, 2001.

R. P. Bennett and B. Dalby, Protein delivery using VP22, Nat Biotechnol, vol.20, p.20, 2002.

W. Derer, H. P. Easwaran, H. Leonhardt, and M. C. Cardoso, A novel approach to induce cell cycle reentry in terminally differentiated muscle cells, FASEB J, vol.16, pp.132-133, 2002.

S. C. Oliveira, J. S. Harms, R. R. Afonso, and G. A. Splitter, A genetic immunization adjuvant system based on BVP22-antigen fusion, Hum Gene Ther, vol.12, pp.1353-1359, 2001.

C. F. Hung, Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen, J Immunol, vol.166, pp.5733-5740, 2001.

B. Fang, B. Xu, P. Koch, and J. A. Roth, Intercellular trafficking of VP22-GFP fusion proteins is not observed in cultured mammalian cells, Gene Ther, vol.5, pp.1420-1424, 1998.

M. Lundberg and M. Johansson, Is VP22 nuclear homing an artifact?, Nat Biotechnol, vol.19, pp.713-714, 2001.

A. Sgambato, A. Cittadini, B. Faraglia, and I. B. Weinstein, Multiple functions of p27(Kip1) and its alterations in tumour cells: a review, J Cell Physiol, vol.183, pp.18-27, 2000.

J. Philipp-staheli, S. R. Payne, and C. J. Kemp, p27(Kip1): regulation and function of a haploinsufficient tumour suppressor and its misregulation in cancer, Exp Cell Res, vol.264, pp.148-168, 2001.

P. L. Porter, Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients, Nat Med, vol.3, pp.222-225, 1997.

J. Chen, T. Willingham, M. Shuford, and P. D. Nisen, Tumour suppression and inhibition of aneuploid cell accumulation in human brain tumour cells by ectopic overexpression of the cyclindependent kinase inhibitor p27KIP1, J Clin Invest, vol.97, pp.1983-1988, 1996.

C. Craig, A recombinant adenovirus expressing p27Kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells, Oncogene, vol.14, pp.2283-2289, 1997.

I. Naruse, Over-expression of p27kip1 induces growth arrest and apoptosis mediated by changes of pRb expression in lung cancer cell lines, Int J Cancer, vol.88, pp.377-383, 2000.

L. E. Pomeranz and J. A. Blaho, Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection, J Virol, vol.73, pp.6769-6781, 1999.

J. S. Harms, X. Ren, S. C. Oliveira, and G. A. Splitter, Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 VP22 tegument protein subcellular associations, J Virol, vol.74, pp.3301-3312, 2000.

A. Aints, Mapping of herpes simplex virus-1 VP22 functional domains for inter-and subcellular protein targeting, Gene Ther, vol.8, pp.1051-1056, 2001.

D. M. Koelle, J. M. Frank, M. L. Johnson, and W. W. Kwok, Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions, J Virol, vol.72, pp.7476-7483, 1998.

D. M. Koelle, CD4 T-cell responses to herpes simplex virus type 2 major capsid protein VP5: comparison with responses to tegument and envelope glycoproteins, J Virol, vol.74, pp.11-422, 2000.