C. Bai, P. Sen, K. Hofmann, L. Ma, M. Goebl et al., SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the Fbox, Cell, vol.86, pp.263-74, 1996.

E. Brambilla, S. Gazzeri, D. Moro, C. De-fromentel, C. Gouyer et al., , 1993.

, Immunohistochemical study of p53 in human lung carcinomas, Am J Pathol, vol.143, pp.199-210

E. Brambilla, D. Moro, S. Gazzeri, and C. Brambilla, Alterations of expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance, J Pathol, vol.188, pp.351-60, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02345633

A. C. Carrano, E. Eytan, A. Hershko, and M. Pagano, SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27, Nat Cell Biol, vol.1, pp.193-202, 1999.

J. Degregori, The genetics of the E2F family of transcription factors: shared functions and unique roles, Biochim Biophys Acta, vol.1602, pp.131-50, 2002.

R. J. Deshaies, SCF and Cullin/Ring H2-based ubiquitin ligases, Annu Rev Cell Dev Biol, vol.15, pp.435-67, 1999.

B. Eymin, S. Gazzeri, C. Brambilla, and E. Brambilla, Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma, Oncogene, vol.20, pp.1678-87, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-02337591

B. Eymin, L. Karayan, P. Seite, C. Brambilla, E. Brambilla et al., Human ARF binds E2F1 and inhibits its transcriptional activity, Oncogene, vol.20, pp.1033-1074, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-02345407

D. Ginsberg, E2F1 pathways to apoptosis, FEBS Lett, vol.529, pp.122-127, 2002.

V. Gouyer, S. Gazzeri, I. Bolon, C. Drevet, C. Brambilla et al., Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors, Am J Respir Cell Mol Biol, vol.17, pp.1-9, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02345668

M. Gstaiger, R. Jordan, M. Lim, C. Catzavelos, J. Mestan et al., Skp2 is oncogenic and overexpressed in human cancers, Proc Natl Acad Sci U S A, vol.98, pp.5043-5051, 2001.

J. W. Harbour and D. C. Dean, The Rb/E2F pathway: expanding roles and emerging paradigms, Genes Dev, vol.14, pp.2393-409, 2000.

S. Y. Kim, A. Herbst, K. A. Tworkowski, S. E. Salghetti, and W. P. Tansey, Skp2 regulates Myc protein stability and activity, Mol Cell, vol.11, pp.1177-88, 2003.

A. Marti, C. Wirbelauer, M. Scheffner, and W. Krek, Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation, Nat Cell Biol, vol.1, pp.14-23, 1999.

K. Nakayama, H. Nagahama, Y. A. Minamishima, M. Matsumoto, I. Nakamichi et al., Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication, Embo J, vol.19, pp.2069-81, 2000.

K. Nakayama, H. Nagahama, Y. A. Minamishima, S. Miyake, N. Ishida et al., Skp2-mediated degradation of p27 regulates progression into mitosis, Dev Cell, vol.6, pp.661-72, 2004.

K. I. Nakayama and K. Nakayama, Ubiquitin ligases: cell-cycle control and cancer, Nat Rev Cancer, vol.6, pp.369-81, 2006.

A. Osoegawa, I. Yoshino, S. Tanaka, K. Sugio, T. Kameyama et al., Regulation of p27 by S-phase kinase-associated protein 2 is associated with aggressiveness in non-small-cell lung cancer, J Clin Oncol, vol.22, pp.4165-73, 2004.

C. Salon, B. Eymin, O. Micheau, L. Chaperot, J. Plumas et al., E2F1 induces apoptosis and sensitizes human lung adenocarcinoma cells to death-receptormediated apoptosis through specific downregulation of c-FLIP(short), Cell Death Differ, vol.13, pp.260-72, 2006.

T. Soucek, O. Pusch, E. Hengstschlager-ottnad, P. D. Adams, and M. Hengstschlager, , 1997.

, Deregulated expression of E2F-1 induces cyclin A-and E-associated kinase activities independently from cell cycle position, Oncogene, vol.14, pp.2251-2258

I. Takanami, The prognostic value of overexpression of Skp2 mRNA in non-small cell lung cancer, Oncol Rep, vol.13, pp.727-758, 2005.

K. H. Yeh, T. Kondo, J. Zheng, L. M. Tsvetkov, J. Blair et al., The F-box protein SKP2 binds to the phosphorylated threonine 380 in cyclin E and regulates ubiquitindependent degradation of cyclin E, Biochem Biophys Res Commun, vol.281, pp.884-90, 2001.

S. Yokoi, K. Yasui, M. Mori, T. Iizasa, T. Fujisawa et al., Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes, Am J Pathol, vol.165, pp.175-80, 2004.

S. Yokoi, K. Yasui, F. Saito-ohara, K. Koshikawa, T. Iizasa et al., A novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers, Am J Pathol, vol.161, pp.207-223, 2002.

H. Zhang, R. Kobayashi, K. Galaktionov, and D. Beach, p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase, Cell, vol.82, pp.915-940, 1995.

L. Zhang and C. Wang, F-box protein Skp2: a novel transcriptional target of E2F, Oncogene, vol.25, pp.2615-2642, 2006.

N. Zheng, B. A. Schulman, L. Song, J. J. Miller, P. D. Jeffrey et al., Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex, Nature, vol.416, pp.703-712, 2002.

C. Q. Zhu, F. H. Blackhall, M. Pintilie, P. Iyengar, N. Liu et al., Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker, Clin Cancer Res, vol.10, pp.1984-91, 2004.