J. Degregori, The genetics of the E2F family of transcription factors: shared functions and unique roles, Biochim Biophys Acta, vol.1602, issue.2, pp.131-50, 2002.

N. Dyson, The regulation of E2F by pRB-family proteins, Genes Dev, vol.12, issue.15, pp.2245-62, 1998.

D. Stefano, L. Jensen, M. R. Helin, and K. , E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes, Embo J, vol.22, issue.23, pp.6289-98, 2003.

J. W. Harbour and D. C. Dean, The Rb/E2F pathway: expanding roles and emerging paradigms, Genes Dev, vol.14, pp.2393-409, 2000.

J. Degregori, G. Leone, A. Miron, L. Jakoi, and J. R. Nevins, Distinct roles for E2F proteins in cell growth control and apoptosis, Proc Natl Acad Sci U S A, vol.94, issue.14, pp.7245-50, 1997.

D. G. Johnson, J. K. Schwarz, W. D. Cress, and J. R. Nevins, Expression of transcription factor E2F1 induces quiescent cells to enter S phase, Nature, vol.365, issue.6444, pp.349-52, 1993.

X. Q. Qin, D. M. Livingston, W. G. Kaelin, J. Adams, and P. D. , Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis, Proc Natl Acad Sci, vol.91, issue.23, pp.10918-10940, 1994.

X. Wu and A. J. Levine, p53 and E2F-1 cooperate to mediate apoptosis, Proc Natl Acad Sci U S A, vol.91, issue.9, pp.3602-3608, 1994.

T. F. Kowalik, J. Degregori, G. Leone, L. Jakoi, and J. R. Nevins, E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2, Cell Growth Differ, 1998.

S. J. Field, F. Y. Tsai, F. Kuo, A. M. Zubiaga, W. G. Kaelin et al., , pp.2-3

, functions in mice to promote apoptosis and suppress proliferation, Cell, vol.85, issue.4, pp.549-61, 1996.

I. Garcia, M. Murga, A. Vicario, S. J. Field, and A. M. Zubiaga, A role for E2F1 in the induction of apoptosis during thymic negative selection, Cell Growth Differ, vol.11, issue.2, pp.91-99, 2000.

L. Yamasaki, T. Jacks, R. Bronson, E. Goillot, E. Harlow et al., Tumor induction and tissue atrophy in mice lacking E2F-1, Cell, vol.85, issue.4, pp.537-585, 1996.

S. W. Hiebert, G. Packham, D. K. Strom, R. Haffner, M. Oren et al., E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis, Mol Cell Biol, vol.15, issue.12, pp.6864-74, 1995.

J. K. Hsieh, S. Fredersdorf, T. Kouzarides, K. Martin, and X. Lu, E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction, Genes Dev, vol.11, issue.14, pp.1840-52, 1997.

D. Ginsberg, E2F1 pathways to apoptosis, FEBS Lett, vol.529, issue.1, pp.122-127, 2002.

Q. Cao, Y. Xia, M. Azadniv, and I. N. Crispe, The E2F-1 transcription factor promotes caspase-8 and bid expression, and enhances Fas signaling in T cells, J Immunol, vol.173, issue.2, pp.1111-1118, 2004.

S. T. Hou, X. Xie, A. Baggley, D. S. Park, G. Chen et al.,

, pathway by the nonproliferative p38 MAPK during Fas (APO1/CD95)-mediated neuronal apoptosis, J Biol Chem, vol.277, issue.50, pp.48764-70, 2002.

N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima et al., The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell, vol.66, issue.2, pp.233-276, 1991.

M. P. Boldin, E. E. Varfolomeev, Z. Pancer, I. L. Mett, J. H. Camonis et al., A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain, J Biol Chem, vol.270, issue.14, pp.505-517, 1995.

M. P. Boldin, T. M. Goncharov, Y. V. Goltsev, and D. Wallach, Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death, Cell, vol.85, issue.6, pp.803-818, 1996.

S. M. Srinivasula, M. Ahmad, T. Fernandes-alnemri, G. Litwack, and E. S. Alnemri, Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases, Proc Natl Acad Sci, vol.93, issue.25, pp.14486-91, 1996.

M. Muzio, A. M. Chinnaiyan, F. C. Kischkel, K. O'rourke, A. Shevchenko et al.,

, FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex, Cell, vol.85, issue.6, pp.817-844, 1996.

F. C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al.,

, Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, Embo J, vol.14, issue.22, pp.5579-88, 1995.

J. P. Medema, C. Scaffidi, F. C. Kischkel, A. Shevchenko, M. Mann et al.,

, FLICE is activated by association with the CD95 death-inducing signaling complex (DISC)

, Embo J, vol.16, issue.10, pp.2794-804, 1997.

H. Hirata, A. Takahashi, S. Kobayashi, S. Yonehara, H. Sawai et al., Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis, J Exp Med, vol.187, issue.4, pp.587-600, 1998.

C. Scaffidi, S. Fulda, A. Srinivasan, C. Friesen, F. Li et al., APO-1/Fas) signaling pathways, Embo J, vol.95, issue.6, pp.1675-87, 1998.

D. Cash, a novel caspase homologue with death effector domains, J Biol Chem, vol.272, issue.32, pp.19641-19645, 1997.

D. K. Han, P. M. Chaudhary, M. E. Wright, C. Friedman, B. J. Trask et al., MRIT, a novel death-effector domain-containing protein, interacts with caspases and BclXL and initiates cell death, Proc Natl Acad Sci U S A, vol.94, issue.21, pp.11333-11341, 1997.

S. Hu, C. Vincenz, J. Ni, R. Gentz, V. M. Dixit et al., CLARP, a death effector domaincontaining protein interacts with caspase-8 and regulates apoptosis, Proc Natl Acad Sci U S A, vol.272, issue.28, pp.10717-10739, 1997.

M. Irmler, M. Thome, M. Hahne, P. Schneider, K. Hofmann et al., Inhibition of death receptor signals by cellular FLIP, Nature, vol.388, issue.6638, pp.190-195, 1997.

H. B. Shu, D. R. Halpin, and D. V. Goeddel, Casper is a FADD-and caspase-related inducer of apoptosis, Immunity, vol.6, issue.6, pp.751-63, 1997.

S. M. Srinivasula, M. Ahmad, S. Ottilie, F. Bullrich, S. Banks et al., FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis, J Biol Chem, vol.272, issue.30, pp.18542-18547, 1997.

A. Krueger, I. Schmitz, S. Baumann, P. H. Krammer, and S. Kirchhoff, Cellular FLICEinhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex, J Biol Chem, vol.276, issue.23, pp.20633-20673, 2001.

D. W. Chang, Z. Xing, Y. Pan, A. Algeciras-schimnich, B. C. Barnhart et al., c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis, Embo J, vol.21, issue.14, pp.3704-3718, 2002.

O. Micheau, M. Thome, P. Schneider, N. Holler, J. Tschopp et al., The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex, J Biol Chem, vol.277, issue.47, pp.45162-71, 2002.

K. M. Boatright, C. Deis, J. B. Denault, D. P. Sutherlin, and G. S. Salvesen, Activation of caspases-8 and -10 by FLIP(L), Biochem J, vol.382, issue.2, pp.651-658, 2004.

S. Mathas, A. Lietz, I. Anagnostopoulos, F. Hummel, B. Wiesner et al., c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis, J Exp Med, vol.199, issue.8, pp.1041-52, 2004.

B. Eymin, S. Gazzeri, C. Brambilla, and E. Brambilla, Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma, Oncogene, vol.20, issue.14, pp.1678-87, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-02337591

A. C. Phillips, S. Bates, K. M. Ryan, K. Helin, and K. H. Vousden, Induction of DNA synthesis and apoptosis are separable functions of E2F-1, Genes Dev, vol.11, issue.14, pp.1853-63, 1997.

Z. Nahle, J. Polakoff, R. V. Davuluri, M. E. Mccurrach, M. D. Jacobson et al.,

, Direct coupling of the cell cycle and cell death machinery by E2F, Nat Cell Biol, vol.4, issue.11, pp.859-64, 2002.

S. Fulda, C. Friesen, M. Los, C. Scaffidi, W. Mier et al., Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors, Cancer Res, vol.57, issue.21, pp.4956-64, 1997.

Y. Aragane, D. Kulms, D. Metze, G. Wilkes, B. Poppelmann et al., Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L, J Cell Biol, vol.140, issue.1, pp.171-82, 1998.

J. G. Boesen-de-cock, E. De-vries, G. T. Williams, and J. Borst, The anti-cancer drug etoposide

O. Micheau, E. Solary, A. Hammann, and M. T. Dimanche-boitrel, Fas ligand-independent

, FADD-mediated activation of the Fas death pathway by anticancer drugs, J Biol Chem, vol.274, issue.12, pp.7987-92, 1999.

A. Algeciras-schimnich, L. Shen, B. C. Barnhart, A. E. Murmann, J. K. Burkhardt et al., Molecular ordering of the initial signaling events of CD95, Mol Cell Biol, vol.22, issue.1, pp.207-227, 2002.

D. Kagi, F. Vignaux, B. Ledermann, K. Burki, V. Depraetere et al., Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity, Science, vol.265, issue.5171, pp.528-558, 1994.

B. Lowin, M. Hahne, C. Mattmann, and J. Tschopp, Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways, Nature, vol.370, issue.6491, pp.650-652, 1994.

F. Mami-chouaib, H. Echchakir, D. G. Vergnon, I. Chouaib, and S. , Antitumor cytotoxic T-lymphocyte response in human lung carcinoma: identification of a tumorassociated antigen, Immunol Rev, vol.188, pp.114-135, 2002.

M. Djerbi, V. Screpanti, A. I. Catrina, B. Bogen, P. Biberfeld et al., The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors, J Exp Med, vol.190, issue.7, pp.1025-1057, 1999.

J. P. Medema, J. De-jong, T. Van-hall, C. J. Melief, and R. Offringa, Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein, J Exp Med, vol.190, issue.7, pp.1033-1041, 1999.

M. Irwin, M. C. Marin, A. C. Phillips, R. S. Seelan, D. I. Smith et al., Role for the p53 homologue p73 in E2F-1-induced apoptosis, Nature, vol.407, issue.6804, pp.645-653, 2000.

T. Stiewe and B. M. Putzer, Role of the p53-homologue p73 in E2F1-induced apoptosis, Nat Genet, vol.26, issue.4, pp.464-473, 2000.

M. C. Moroni, E. S. Hickman, E. L. Denchi, G. Caprara, E. Colli et al., Apaf-1 is a transcriptional target for E2F and p53, Nat Cell Biol, vol.3, issue.6, pp.552-560, 2001.

Y. Furukawa, N. Nishimura, M. Satoh, H. Endo, S. Iwase et al., Apaf-1 is a mediator of E2F-1-induced apoptosis, J Biol Chem, vol.277, issue.42, pp.39760-39768, 2002.

A. C. Phillips, M. K. Ernst, S. Bates, N. R. Rice, and K. H. Vousden, E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways, Mol Cell, vol.4, issue.5, pp.771-81, 1999.

S. Wang, N. Nath, A. Minden, and S. Chellappan, Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases, Embo J, vol.18, issue.6, pp.1559-70, 1999.

B. Bi, N. K. Littlewood, and I. N. Crispe, Cleavage of E2F-1-regulating proteins and activation of E2F-1 during CD95-induced death of thymocytes, Immunology, vol.104, issue.1, pp.37-42, 2001.

J. Tschopp, M. Irmler, and M. Thome, Inhibition of fas death signals by FLIPs, Curr Opin Immunol, vol.10, issue.5, pp.552-560, 1998.

Y. Jiang, W. N. Rom, T. A. Yie, C. X. Chi, and K. M. Tchou-wong, Induction of tumor suppression and glandular differentiation of A549 lung carcinoma cells by dominant-negative IGF-I receptor, Oncogene, vol.18, issue.44, pp.6071-6078, 1999.

S. Fulda, E. Meyer, and K. M. Debatin, Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression, Cancer Res, vol.60, issue.14, pp.3947-56, 2000.

M. Thome, P. Schneider, K. Hofmann, H. Fickenscher, E. Meinl et al., Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors, Nature, vol.386, issue.6624, pp.517-538, 1997.

L. Bin, X. Li, L. G. Xu, and H. B. Shu, The short splice form of Casper/c-FLIP is a major cellular inhibitor of TRAIL-induced apoptosis, FEBS Lett, vol.510, issue.1-2, pp.37-40, 2002.

S. Kirchhoff, W. W. Muller, A. Krueger, I. Schmitz, and P. H. Krammer, TCR-mediated upregulation of c-FLIPshort correlates with resistance toward CD95-mediated apoptosis by blocking death-inducing signaling complex activity, J Immunol, vol.165, issue.11, 2000.

J. H. Lieman, L. A. Worley, and J. W. Harbour, Loss of Rb-E2F repression results in caspase-8

T. Fukazawa, T. Fujiwara, F. Uno, F. Teraishi, Y. Kadowaki et al., mediated apoptosis through inactivation of focal adhesion kinase, J Biol Chem, vol.67, 2005.

, Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells, Oncogene, vol.20, issue.37, pp.5225-5256, 2001.

Y. Kim, N. Suh, M. Sporn, and J. C. Reed, An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis, J Biol Chem, vol.277, issue.25, pp.22320-22329, 2002.

J. Stanelle, T. Stiewe, C. C. Theseling, M. Peter, and B. M. Putzer, Gene expression changes in response to E2F1 activation, Nucleic Acids Res, vol.30, issue.8, pp.1859-67, 2002.

T. F. Burns and W. S. El-deiry, Identification of inhibitors of TRAIL-induced death (ITIDs)

, in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach, J Biol Chem, vol.276, issue.41, pp.37879-86, 2001.

I. Schmitz, H. Weyd, A. Krueger, S. Baumann, S. C. Fas et al., Resistance of short term activated T cells to CD95-mediated apoptosis correlates with de novo protein synthesis of c-FLIP(short), J Immunol, vol.172, issue.4, pp.2194-200, 2004.

L. E. French and J. Tschopp, Defective death receptor signaling as a cause of tumor immune escape, Semin Cancer Biol, vol.12, issue.1, pp.51-56, 2002.

W. Roth, S. Isenmann, M. Nakamura, M. Platten, W. Wick et al., Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis, Cancer Res, vol.61, issue.6, pp.2759-65, 2001.

M. Hahne, D. Rimoldi, M. Schroter, P. Romero, M. Schreier et al., Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape, Science, vol.274, issue.5291, p.1363, 1996.

C. S. Mitsiades, N. Mitsiades, V. Poulaki, R. Schlossman, M. Akiyama et al.,

, Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF

, Akt signaling in human multiple myeloma cells: therapeutic implications, Oncogene, vol.21, issue.37, pp.5673-83, 2002.

I. Viard-leveugle, S. Veyrenc, L. E. French, C. Brambilla, and E. Brambilla,

, Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma, J Pathol, vol.201, issue.2, pp.268-77, 2003.

B. Eymin, C. Leduc, J. L. Coll, E. Brambilla, and S. Gazzeri, p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice, Oncogene, vol.22, issue.12, pp.1822-1857, 2003.

J. Plumas, M. C. Jacob, L. Chaperot, J. P. Molens, J. J. Sotto et al., Tumor B cells from non-Hodgkin's lymphoma are resistant to CD95 (Fas/Apo-1)-mediated apoptosis, Blood, vol.91, issue.8, pp.2875-85, 1998.

, Legends Figure 1: E2F1 induces apoptosis in lung adenocarcinoma cells through a caspase-8-and DNA-binding domain-dependent mechanism

, 1/GFP (open bars) or a pcDNA3.1/E2F1 (closed bars) vector. Apoptosis was monitored after 6 days of geniticin selection, in GFP-or E2F1-positive cells using Hoechst 33342 staining. Results are the mean ± SD of three independent experiments. (b) Western blot analysis (upper panel) and percentage of apoptotic cells, A549 and H1299 cell lines were transfected either with a control pcDNA3

, Apoptosis was assessed in GFP-or E2F1-positive cells using Hoechst 33342 staining after 6 days of geniticin selection. Results are the mean ± SD of three independent experiments. (b) Upper panel: a 96-hours cell viability assay was performed in H358/Tet-On/E2F1 or H358/Tet-On/E2F1(E132) cells co-treated with (Dox +; black symbols) or without (Dox -; white symbols) doxycyclin and increasing amounts of the FAS agonistic CH11 mAb. Results are expressed as the percentage of cell survival as compared to untreated cells. Mean value of three independent experiments ± SD performed in triplicate are presented. Lower panel: H358/Tet-On/E2F1 and H358/Tet-On/E2F1(E132) cells were treated or not with 293FasL-supernatants or 40 ng/ml TRAIL, in the presence (Dox +) or in the absence (Dox-) of doxycyclin for 72 hours. Percentage of apoptotic cells was monitored after Hoescht staining. Results are the mean ± SD of three independent experiments, H358/Tet-On/E2F1(E132) (hatched white and black bars) cells cultured in the presence (Dox +) or in the absence (Dox -) of doxycyclin for indicated times

, black symbols) or without (Dox -; white symbols) doxycyclin and increasing amounts of either etoposide or paclitaxel as indicated. Results are expressed as the percentage of cell survival as compared to untreated cells. Mean value of three independent experiments ± SD performed in triplicate are presented. (d) E2F1-deficient (E2F1 -/-, black bars) and wild-type control (E2F1 +/+ , white bars) MEFs were treated for 24 hours with increasing amounts of FasL or TRAIL and apoptosis was evaluated using Hoescht staining

, Figure 6: Downregulation of c-FLIP S is sufficient to restore tumor cells and primary E2F1-/-MEFs sensitivity to death receptor-mediated apoptosis