X. W. Wu, D. M. Muzny, C. C. Lee, and C. T. Caskey, Two independent mutational events in the loss of urate oxidase during hominoid evolution, J Mol Evol, vol.34, pp.78-84, 1992.

N. Anzai, Y. Kanai, and H. Endou, New insights into renal transport of urate, Current Opinion in Rheumatology, vol.19, pp.151-157, 2007.

P. L. Riches, A. F. Wright, and S. H. Ralston, Recent insights into the pathogenesis of hyperuricaemia and gout, Hum Mol Genet, vol.18, pp.177-184, 2009.

T. J. Major, R. K. Topless, N. Dalbeth, and T. R. Merriman, Evaluation of the diet wide contribution to serum urate levels: metaanalysis of population based cohorts, BMJ, vol.363, p.3951, 2018.

A. Kottgen, Genome-wide association analyses identify 18 new loci associated with serum urate concentrations, Nat Genet, vol.45, pp.145-154, 2013.

H. Iwahana and M. Itakura, Inherited disorders of uric acid metabolism-classification, enzymatic-and DNA-diagnosis]. Nihon rinsho, Japanese journal of clinical medicine, vol.54, pp.3303-3308, 1996.

I. Sebesta, Diagnostic tests for primary renal hypouricemia, Nucleosides Nucleotides Nucleic Acids, vol.30, pp.1112-1116, 2011.

H. I. Cheong, Mutational analysis of idiopathic renal hypouricemia in Korea, Pediatr. Nephrol, vol.20, pp.886-890, 2005.

C. K. Tseng, In addition to malnutrition and renal function impairment, anemia is associated with hyponatremia in the elderly, Arch. Gerontol. Geriatr, vol.55, pp.77-81, 2012.

A. Enomoto, Molecular identification of a renal urate anion exchanger that regulates blood urate levels, Nature, vol.417, pp.447-452, 2002.

B. Stiburkova, J. Taylor, A. M. Marinaki, and I. Sebesta, Acute kidney injury in two children caused by renal hypouricaemia type 2, Pediatr. Nephrol, vol.27, pp.1411-1415, 2012.

D. Dinour, URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews, Nephrol. Dial. Transplant, vol.26, pp.2175-2181, 2011.

V. Tasic, Clinical and functional characterization of URAT1 variants, PLoS One, vol.6, pp.28641-28641, 2011.

B. Stiburkova, Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: biochemical, genetics and functional analysis, Eur. J. Hum. Genet, vol.21, pp.1067-1073, 2013.

B. Bhasin, Hereditary renal hypouricemia: a new role for allopurinol?, Am. J. Med, vol.127, pp.3-4, 2014.

K. Ichida, Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion, Journal of the American Society of Nephrology, vol.15, pp.164-173, 2004.

B. Clémençon, Expression, Purification, and Structural Insights for the Human Uric Acid Transporter, GLUT9, Using the Xenopus laevis Oocytes System, Plos One, vol.9, 2014.

N. Iwai, A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese, Kidney Int, vol.66, pp.935-944, 2004.

K. Ichida, Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese, Clin. Genet, vol.74, pp.243-251, 2008.

, Scientific RepoRtS |, vol.9, p.14360, 2019.

A. Taniguchi, A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout, Arthritis & rheumatism, vol.52, pp.2576-2577, 2005.

M. Kuwabara, Prevalence and complications of hypouricemia in a general population: A large-scale cross-sectional study in Japan, Plos One, vol.12, 2017.

M. Kawachi, Decreased renal clearance of xanthine and hypoxanthine in a patient with renal hypouricemia: a new defect in renal handling of purines, Nephron, vol.61, pp.428-431, 1992.

M. Windpessl, M. Ritelli, M. Wallner, and M. Colombi, A Novel Homozygous SLC2A9 Mutation Associated with Renal-Induced Hypouricemia, Am. J. Nephrol, vol.43, pp.245-250, 2016.

Y. Okabayashi, Rare case of nephrocalcinosis in the distal tubules caused by hereditary renal hypouricaemia 3 months after kidney transplantation, Nephrology (Carlton), vol.21, issue.1, pp.67-71, 2016.

S. Sugihara, Depletion of Uric Acid Due to SLC22A12 (URAT1) Loss-of-Function Mutation Causes Endothelial Dysfunction in Hypouricemia, Circ. J, vol.79, pp.1125-1132, 2015.

L. J. Mou, L. P. Jiang, and Y. Hu, A novel homozygous GLUT9 mutation cause recurrent exercise-induced acute renal failure and posterior reversible encephalopathy syndrome, J. Nephrol, vol.28, pp.387-392, 2015.

M. F. Facheris, Variation in the uric acid transporter gene SLC2A9 and its association with AAO of Parkinson's disease, J. Mol. Neurosci, vol.43, pp.246-250, 2011.

A. Tin, Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels, Nature Communications, vol.9, 2018.

Y. Kim and B. G. Han, Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium, Int. J. Epidemiol, vol.46, 1350.

S. K. Cho, S. Kim, J. Chung, and S. H. Jee, Discovery of URAT1 SNPs and association between serum uric acid levels and URAT1, BMJ open, vol.5, pp.9360-009360, 2015.

O. Sperling, Hereditary renal hypouricemia, Mol. Genet. Metab, vol.89, pp.14-18, 2006.

I. A. Adzhubei, A method and server for predicting damaging missense mutations, Nat Methods, vol.7, pp.248-249, 2010.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat Protoc, vol.4, pp.1073-1081, 2009.

A. Gonzalez-perez and N. Lopez-bigas, Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel, Am J Hum Genet, vol.88, pp.440-449, 2011.

J. M. Schwarz, D. N. Cooper, M. Schuelke, and D. Seelow, MutationTaster2: mutation prediction for the deep-sequencing age, Nat Methods, vol.11, pp.361-362, 2014.

P. Benkert, M. Biasini, and T. Schwede, Toward the estimation of the absolute quality of individual protein structure models, Bioinformatics, vol.27, pp.343-350, 2011.

D. Deng, Molecular basis of ligand recognition and transport by glucose transporters, Nature, vol.526, pp.391-396, 2015.

N. Nomura, Structure and mechanism of the mammalian fructose transporter GLUT5, Nature, vol.526, pp.397-401, 2015.

J. Yang, The I-TASSER Suite: protein structure and function prediction, Nat. Methods, vol.12, pp.7-8, 2015.

R. E. Cachau, J. W. Erickson, and H. O. Villar, Novel procedure for structure refinement in homology modeling and its application to the human class Mu glutathione S-transferases, Protein Eng, vol.7, pp.831-839, 1994.

J. C. Phillips, Scalable molecular dynamics with NAMD, J Comput Chem, vol.26, pp.1781-1802, 2005.