P. Roussel, G. Lamblin, M. Lhermitte, N. Houdret, J. J. Lafitte et al., The complexity of mucins, Biochimie, vol.70, pp.1471-1482, 1988.

J. Dekker, J. W. Rossen, H. A. Buller, and A. W. Einerhand, The MUC family: an obituary, Trends Biochem Sci, vol.27, pp.126-131, 2002.

S. J. Gendler and A. P. Spicer, Epithelial mucin genes, Annu Rev Physiol, vol.57, pp.607-634, 1995.

D. J. Thornton, K. Rousseau, and M. A. Mcguckin, Structure and function of the polymeric mucins in airways mucus, Annu Rev Physiol, vol.70, pp.459-486, 2008.

J. L. Desseyn, V. Gouyer, and D. Tetaert, Architecture of the gel-forming mucins, The Epithelial Mucins: Structure/Function. Roles in Cancer and Inflammatory Diseases, pp.1-16, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02340996

S. E. Baldus, K. Engelmann, and F. G. Hanisch, MUC1 and the MUCs: a family of human mucins with impact in cancer biology, Crit Rev Clin Lab Sci, vol.41, pp.189-231, 2004.

D. T. Tran and K. G. Hagen, Mucin-type O-glycosylation during development, J Biol Chem, vol.288, pp.6921-6929, 2013.

S. Groux-degroote, A. Harduin-lepers, and P. Delannoy, Biosynthesis of mucin O-glycan chains in normal and pathological states, The Epithelial Mucins: Structure/Function. Roles in Cancer and Inflammatory Diseases, pp.39-54, 2008.

J. L. Desseyn, Mucin CYS domains are ancient and highly conserved modules that evolved in concert, Mol Phylogenet Evol, vol.52, pp.284-292, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02177076

D. Ambort, M. E. Johansson, J. K. Gustafsson, A. Ermund, and G. C. Hansson, Perspectives on mucus properties and formation--lessons from the biochemical world, Cold Spring Harb Perspect Med, vol.2, p.14159, 2012.

M. Backstrom, D. Ambort, E. Thomsson, M. E. Johansson, and G. C. Hansson, Increased understanding of the biochemistry and biosynthesis of MUC2 and other gel-forming mucins through the recombinant expression of their protein domains, Mol Biotechnol, vol.54, pp.250-256, 2013.

C. L. Hattrup and S. J. Gendler, Structure and function of the cell surface (tethered) mucins, Annu Rev Physiol, vol.70, pp.431-457, 2008.

N. Jonckheere, N. Skrypek, F. Frenois, and I. Van-seuningen, Membrane-bound mucin modular domains: from structure to function, Biochimie, pp.1077-1086, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00807818

N. Jonckheere and I. Van-seuningen, The membrane-bound mucins: how large O-glycoproteins play key roles in epithelial cancers and hold promise as biological tools for gene-based and immunotherapies, Crit Rev Oncog, vol.14, pp.177-196, 2008.

J. L. Desseyn, D. Tetaert, and V. Gouyer, Architecture of the large membrane-bound mucins, Gene, pp.215-222, 2008.

B. H. Perez and I. K. Gipson, Focus on Molecules: human mucin MUC16, vol.87, pp.400-401, 2008.

N. Jonckheere and I. Van-seuningen, The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers, Biochimie, pp.1-11, 2010.

I. Van-seuningen, P. Pigny, M. Perrais, N. Porchet, and J. P. Aubert, Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer?, Front Biosci, vol.6, pp.1216-1234, 2001.

R. Pinto, A. S. Carvalho, T. Conze, A. Magalhaes, G. Picco et al., Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation, J Cell Mol Med, vol.16, pp.1474-1484, 2012.

C. Robbe-masselot, J. C. Michalski, and C. Capon, Tumour-associated antigens of mucin O-glycans. Clinical relevance of glycobiology in cancer and inflammatory diseases of the epithelium, The Epithelial Mucins: Structure/Function. Roles in Cancer and Inflammatory Diseases, pp.55-74, 2008.

P. Argueso and I. K. Gipson, Assessing mucin expression and function in human ocular surface epithelia in vivo and in vitro, Methods Mol Biol, vol.842, pp.313-325, 2012.

M. A. Hollingsworth and B. J. Swanson, Mucins in cancer: protection and control of the cell surface, Nat Rev Cancer, vol.4, pp.45-60, 2004.

N. Jonckheere, N. Skrypek, and I. Van-seuningen, Mucins and pancreatic cancer, Cancers, issue.2, pp.1794-1812, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00807873

S. Kaur, S. Kumar, N. Momi, A. R. Sasson, and S. K. Batra, Mucins in pancreatic cancer and its microenvironment, Nat Rev Gastroenterol Hepatol, vol.10, pp.607-620, 2013.

D. W. Kufe, Mucins in cancer: function, prognosis and therapy, Nat Rev Cancer, vol.9, pp.874-885, 2009.

H. Hoshi, T. Sawada, M. Uchida, H. Saito, H. Iijima et al., Tumor-associated MUC5AC stimulates in vivo tumorigenicity of human pancreatic cancer, Int J Oncol, vol.38, pp.619-627, 2011.

H. Valque, V. Gouyer, F. Gottrand, and J. L. Desseyn, MUC5B leads to aggressive behavior of breast cancer MCF7 cells, vol.7, p.46699, 2012.

S. Yamazoe, H. Tanaka, T. Sawada, R. Amano, N. Yamada et al., RNA interference suppression of mucin 5AC (MUC5AC) reduces the adhesive and invasive capacity of human pancreatic cancer cells, J Exp Clin Cancer Res, vol.29, p.53, 2010.

S. C. Chauhan, M. C. Ebeling, D. M. Maher, M. D. Koch, A. Watanabe et al., MUC13 mucin augments pancreatic tumorigenesis, vol.11, pp.24-33, 2012.

D. M. Maher, B. K. Gupta, S. Nagata, M. Jaggi, and S. C. Chauhan, Mucin 13: structure, function, and potential roles in cancer pathogenesis, vol.9, pp.531-537, 2011.

I. Lakshmanan, M. P. Ponnusamy, S. Das, S. Chakraborty, D. Haridas et al., MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells, pp.805-817, 2012.

A. Velcich, W. Yang, J. Heyer, A. Fragale, C. Nicholas et al., Colorectal cancer in mice genetically deficient in the mucin Muc2, Science, vol.295, pp.1726-1729, 2002.

R. Dahiya, T. Lesuffleur, K. S. Kwak, J. C. Byrd, A. Barbat et al., Expression and characterization of mucins associated with the resistance to methotrexate of human colonic adenocarcinoma cell line HT29, Cancer Res, vol.52, pp.4655-4662, 1992.

T. Lesuffleur, N. Porchet, J. P. Aubert, D. Swallow, J. R. Gum et al., Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations, J Cell Sci, vol.106, pp.771-783, 1993.

E. Leteurtre, V. Gouyer, K. Rousseau, O. Moreau, A. Barbat et al., Differential mucin expression in colon carcinoma HT-29 clones with variable resistance to 5-fluorouracil and methotrexate, Biol Cell, vol.96, pp.145-151, 2004.

S. P. Fessler, M. T. Wotkowicz, S. K. Mahanta, and C. Bamdad, MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells, Breast Cancer Res Treat, vol.118, pp.113-124, 2009.

M. Deng, D. D. Jing, and X. J. Meng, Effect of MUC1 siRNA on drug resistance of gastric cancer cells to trastuzumab, Asian Pac J Cancer Prev, vol.14, pp.127-131, 2013.

M. Shi, Z. Yang, M. Hu, D. Liu, Y. Hu et al., Catecholamine-Induced beta2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression, J Immunol, vol.190, pp.5600-5608, 2013.

A. C. Chen, I. Migliaccio, M. Rimawi, S. Lopez-tarruella, C. J. Creighton et al., Upregulation of mucin4 in ERpositive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies, Breast Cancer Res Treat, vol.134, pp.583-593, 2012.

S. Bafna, S. Kaur, N. Momi, and S. K. Batra, Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin, Br J Cancer, vol.101, pp.1155-1161, 2009.

M. Mimeault, S. L. Johansson, S. Senapati, N. Momi, S. Chakraborty et al., MUC4 downregulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies, Cancer Lett, vol.295, pp.69-84, 2010.

N. Skrypek, B. Duchene, M. Hebbar, E. Leteurtre, I. Van-seuningen et al., The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family, Oncogene, vol.32, pp.1714-1723, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00807837

T. T. Wissniowski, S. Meister, E. G. Hahn, J. R. Kalden, R. Voll et al., Mucin production determines sensitivity to bortezomib and gemcitabine in pancreatic cancer cells, Int J Oncol, vol.40, pp.1581-1589, 2012.

Y. P. Hu, B. Haq, K. L. Carraway, N. Savaraj, and T. J. Lampidis, Multidrug resistance correlates with overexpression of Muc4 but inversely with P-glycoprotein and multidrug resistance related protein in transfected human melanoma cells, Biochem Pharmacol, vol.65, pp.1419-1425, 2003.

L. J. Mekenkamp, K. J. Heesterbeek, M. Koopman, J. Tol, S. Teerenstra et al., Mucinous adenocarcinomas: poor prognosis in metastatic colorectal cancer, Eur J Cancer, vol.48, pp.501-509, 2012.

T. Nagao, T. Kinoshita, T. Hojo, H. Tsuda, K. Tamura et al., The differences in the histological types of breast cancer and the response to neoadjuvant chemotherapy: the relationship between the outcome and the clinicopathological characteristics, Breast, vol.21, pp.289-295, 2012.

K. Oberholzer, M. Menig, A. Kreft, A. Schneider, T. Junginger et al., Rectal cancer: mucinous carcinoma on magnetic resonance imaging indicates poor response to neoadjuvant chemoradiation, Int J Radiat Oncol Biol Phys, vol.82, pp.842-848, 2012.

O. Poujade, P. Morice, R. Rouzier, P. Madelenat, F. Lecuru et al., Pathologic response rate after concomitant neo-adjuvant radiotherapy and chemotherapy for adenocarcinoma of the uterine cervix: a retrospective multicentric study, Int J Gynecol Cancer, vol.20, pp.815-820, 2010.

M. Messager, J. H. Lefevre, V. Pichot-delahaye, A. Souadka, G. Piessen et al., The impact of perioperative chemotherapy on survival in patients with gastric signet ring cell adenocarcinoma: a multicenter comparative study, Ann Surg, vol.254, pp.684-693, 2011.

B. V. Sinn, G. Minckwitz, C. Denkert, H. Eidtmann, S. Darb-esfahani et al., Evaluation of Mucin-1 protein and mRNA expression as prognostic and predictive markers after neoadjuvant chemotherapy for breast cancer, Ann Oncol, pp.2316-2324, 2013.

S. P. Pitroda, N. N. Khodarev, M. A. Beckett, D. W. Kufe, and R. R. Weichselbaum, MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment, Proc Natl Acad Sci U S A, vol.106, pp.5837-5841, 2009.

M. Takano, K. Fujii, T. Kita, Y. Kikuchi, and K. Uchida, Amplicon profiling reveals cytoplasmic overexpression of MUC1 protein as an indicator of resistance to platinum-based chemotherapy in patients with ovarian cancer, Oncol Rep, vol.12, pp.1177-1182, 2004.

D. Zhang, J. Gao, L. Zhu, Z. Hu, R. Hou et al., Chemoresistance Is Associated with MUC1 and Lewis y Antigen Expression in Ovarian Epithelial Cancers, Int J Mol Sci, vol.14, pp.11024-11033, 2013.

P. G. Bhat, D. R. Flanagan, and M. D. Donovan, Drug diffusion through cystic fibrotic mucus: steadystate permeation, rheologic properties, and glycoprotein morphology, J Pharm Sci, vol.85, pp.624-630, 1996.

H. H. Sigurdsson, J. Kirch, and C. M. Lehr, Mucus as a barrier to lipophilic drugs, Int J Pharm, vol.453, pp.56-64, 2013.

L. R. Shaw, W. J. Irwin, T. J. Grattan, and B. R. Conway, The influence of excipients on the diffusion of ibuprofen and paracetamol in gastric mucus, Int J Pharm, vol.290, pp.145-154, 2005.

K. Khanvilkar, M. D. Donovan, and D. R. Flanagan, Drug transfer through mucus, Adv Drug Deliv Rev, vol.48, pp.173-193, 2001.

A. V. Kalra and R. B. Campbell, Mucin impedes cytotoxic effect of 5-FU against growth of human pancreatic cancer cells: overcoming cellular barriers for therapeutic gain, Br J Cancer, vol.97, pp.910-918, 2007.

E. Leteurtre, V. Gouyer, D. Delacour, B. Hemon, A. Pons et al., Induction of a storage phenotype and abnormal intracellular localization of apical glycoproteins are two independent responses to GalNAcalpha-O-bn, J Histochem Cytochem, vol.51, pp.349-361, 2003.

A. V. Kalra and R. B. Campbell, Mucin overexpression limits the effectiveness of 5-FU by reducing intracellular drug uptake and antineoplastic drug effects in pancreatic tumours, Eur J Cancer, vol.45, pp.164-173, 2009.

G. Lafitte, K. Thuresson, and O. Soderman, Diffusion of nutrients molecules and model drug carriers through mucin layer investigated by magnetic resonance imaging with chemical shift resolution, J Pharm Sci, vol.96, pp.258-263, 2007.

J. A. Gubbels, M. Felder, S. Horibata, J. A. Belisle, A. Kapur et al., MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells, Mol Cancer, vol.9, p.11, 2010.

M. Komatsu, L. Yee, and K. L. Carraway, Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells, Cancer Res, vol.59, pp.2229-2236, 1999.

E. Van-de-wiel-van-kemenade, M. J. Ligtenberg, A. J. De-boer, F. Buijs, H. L. Vos et al., Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction, J Immunol, vol.151, pp.767-776, 1993.

S. A. Price-schiavi, S. Jepson, P. Li, M. Arango, P. S. Rudland et al., Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance, Int J Cancer, vol.99, pp.783-791, 2002.

P. Nagy, E. Friedlander, M. Tanner, A. I. Kapanen, K. L. Carraway et al., Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line, Cancer Res, vol.65, pp.473-482, 2005.

J. Ren, N. Agata, D. Chen, Y. Li, W. H. Yu et al., Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents, Cancer Cell, vol.5, pp.163-175, 2004.

X. Wei, H. Xu, and D. Kufe, Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response, Cancer Cell, vol.7, pp.167-178, 2005.

R. Ahmad, M. Alam, H. Rajabi, and D. Kufe, The MUC1-C oncoprotein binds to the BH3 domain of the pro-apoptotic BAX protein and blocks BAX function, J Biol Chem, vol.287, pp.20866-20875, 2012.

D. Raina, R. Ahmad, S. Kumar, J. Ren, K. Yoshida et al., MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage, Embo J, vol.25, pp.3774-3783, 2006.

D. Raina, R. Ahmad, D. Chen, S. Kumar, S. Kharbanda et al., MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway, vol.7, pp.1959-1967, 2008.

R. Ahmad, D. Raina, V. Trivedi, J. Ren, H. Rajabi et al., MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling, vol.9, pp.1419-1427, 2007.

N. Agata, R. Ahmad, T. Kawano, D. Raina, S. Kharbanda et al., MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8, Cancer Res, vol.68, pp.6136-6144, 2008.

A. Bouillez, V. Gnemmi, K. Gaudelot, B. Hemon, B. Ringot et al., Perrais, MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway, Oncotarget, vol.5, pp.754-763, 2014.

A. T. Lau, Y. Wang, and J. F. Chiu, Reactive oxygen species: current knowledge and applications in cancer research and therapeutic, J Cell Biochem, vol.104, pp.657-667, 2008.

P. Storz, Reactive oxygen species in tumor progression, Front Biosci, vol.10, pp.1881-1896, 2005.

L. Yin, Y. Li, J. Ren, H. Kuwahara, and D. Kufe, Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress, J Biol Chem, vol.278, pp.35458-35464, 2003.

L. Yin, L. Huang, and D. Kufe, MUC1 oncoprotein activates the FOXO3a transcription factor in a survival response to oxidative stress, J Biol Chem, vol.279, pp.45721-45727, 2004.

J. P. Fruehauf and F. L. Meyskens, Reactive oxygen species: a breath of life or death?, Clin Cancer Res, vol.13, pp.789-794, 2007.

S. Aubert, V. Fauquette, B. Hemon, R. Lepoivre, N. Briez et al., MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression, Cancer Res, vol.69, pp.5707-5715, 2009.

P. Chaturvedi, A. P. Singh, N. Moniaux, S. Senapati, S. Chakraborty et al., MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins, Mol Cancer Res, vol.5, pp.309-320, 2007.

N. Moniaux, P. Chaturvedi, G. C. Varshney, J. L. Meza, J. F. Rodriguez-sierra et al., Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells, Br J Cancer, vol.97, pp.345-357, 2007.

M. P. Torres, M. P. Ponnusamy, S. Chakraborty, L. M. Smith, S. Das et al., Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies, Mol Cancer Ther, vol.9, pp.1419-1431, 2010.

N. Jonckheere, N. Skrypek, J. Merlin, A. F. Dessein, P. Dumont et al., The Mucin MUC4 and Its Membrane Partner ErbB2 Regulate Biological Properties of Human CAPAN-2 Pancreatic Cancer Cells via Different Signalling Pathways, PLoS One, vol.7, p.32232, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00807830

M. Komatsu, S. Jepson, M. E. Arango, C. A. Carraway, and K. L. Carraway, Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor, Oncogene, vol.20, pp.461-470, 2001.

S. Jepson, M. Komatsu, B. Haq, M. E. Arango, D. Huang et al., Muc4/sialomucin complex, the intramembrane ErbB2 ligand, induces specific phosphorylation of ErbB2 and enhances expression of p27(kip), but does not activate mitogen-activated kinase or protein kinaseB/Akt pathways, Oncogene, vol.21, pp.7524-7532, 2002.

H. C. Workman, C. Sweeney, and K. L. Carraway, The membrane mucin Muc4 inhibits apoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms, Cancer Res, vol.3, pp.2845-2852, 2009.

A. El-khattouti, D. Selimovic, Y. Haikel, M. Megahed, C. R. Gomez et al., Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response, Cancer Lett, vol.343, pp.123-133, 2014.

J. Li, X. Y. Zhong, Z. Y. Li, J. F. Cai, L. Zou et al., CD133 expression in osteosarcoma and derivation of CD133(+) cells, vol.7, pp.577-584, 2013.

S. Nath, K. Daneshvar, L. D. Roy, P. Grover, A. Kidiyoor et al., MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes, vol.2, p.51, 2013.

F. J. Sharom, ABC multidrug transporters: structure, function and role in chemoresistance, Pharmacogenomics, vol.9, pp.105-127, 2008.

M. Greaves and C. C. Maley, Clonal evolution in cancer, Nature, pp.306-313, 2012.

P. B. Gupta, T. T. Onder, G. Jiang, K. Tao, C. Kuperwasser et al., Identification of selective inhibitors of cancer stem cells by high-throughput screening, Cell, vol.138, pp.645-659, 2009.

M. Alam, R. Ahmad, H. Rajabi, A. Kharbanda, and D. Kufe, MUC1-C oncoprotein activates ERK-->C/EBPbeta signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells, J Biol Chem, vol.288, pp.30892-30903, 2013.

D. Stroopinsky, J. Rosenblatt, K. Ito, H. Mills, L. Yin et al., MUC1 is a potential target for the treatment of acute myeloid leukemia stem cells, Cancer Res, vol.73, pp.5569-5579, 2013.

M. P. Ponnusamy, P. Seshacharyulu, A. Vaz, P. Dey, and S. K. Batra, MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells, J Ovarian Res, vol.4, p.7, 2011.

A. Jimeno, G. Feldmann, A. Suarez-gauthier, Z. Rasheed, A. Solomon et al., A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development, Mol Cancer Ther, vol.8, pp.310-314, 2009.

J. Zhou, C. Y. Wang, T. Liu, B. Wu, F. Zhou et al., Persistence of side population cells with high drug efflux capacity in pancreatic cancer, World J Gastroenterol, vol.14, pp.925-930, 2008.

J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, pp.871-890, 2009.

J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions, Nat Rev Mol Cell Biol, issue.7, pp.131-142, 2006.

S. Lamouille, D. Subramanyam, R. Blelloch, and R. Derynck, Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs, Curr Opin Cell Biol, vol.25, pp.200-207, 2013.

M. K. Wendt, M. Tian, and W. P. Schiemann, Deconstructing the mechanisms and consequences of TGF-beta-induced EMT during cancer progression, Cell Tissue Res, vol.347, pp.85-101, 2012.

N. Ahmed, K. Abubaker, J. Findlay, and M. Quinn, Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer, Curr Cancer Drug Targets, vol.10, pp.268-278, 2010.

S. Lim, A. Becker, A. Zimmer, J. Lu, R. Buettner et al., SNAI1-mediated epithelialmesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance, PLoS One, vol.8, p.66558, 2013.

A. Voulgari and A. Pintzas, Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic, Biochim Biophys Acta, pp.75-90, 2009.

S. Yamada, B. C. Fuchs, T. Fujii, Y. Shimoyama, H. Sugimoto et al.,

Y. Tanabe, A. Kodera, and . Nakao, Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer, Surgery, vol.154, pp.946-954, 2013.

M. Comamala, M. Pinard, C. Theriault, I. Matte, A. Albert et al., Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells, Br J Cancer, vol.104, pp.989-999, 2011.

G. Horn, A. Gaziel, D. H. Wreschner, N. I. Smorodinsky, and M. Ehrlich, ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1, Exp Cell Res, vol.315, pp.1490-1504, 2009.

L. D. Roy, M. Sahraei, D. B. Subramani, D. Besmer, S. Nath et al., MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition, Oncogene, vol.30, pp.1449-1459, 2011.

M. P. Ponnusamy, I. Lakshmanan, M. Jain, S. Das, S. Chakraborty et al., MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells, Oncogene, vol.29, pp.5741-5754, 2010.

H. Rajabi, M. Alam, H. Takahashi, A. Kharbanda, M. Guha et al., MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition, Oncogene, vol.33, pp.1680-1689, 2014.

V. Gnemmi, A. Bouillez, K. Gaudelot, B. Hemon, B. Ringot et al., MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/beta-catenin pathway and interaction with SNAIL promoter, Cancer Lett, vol.346, pp.225-236, 2014.

L. Gao, J. Liu, B. Zhang, H. Zhang, D. Wang et al., Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis, Tumour Biol, vol.35, pp.1335-1341, 2014.

N. Jonckheere, I. Van-seuningen-;-gao, L. Liu, J. Zhang, B. Zhang et al., Comment on: Functional MUC4 suppress epithelialmesenchymal transition in lung adenocarcinoma metastasis, Tumour Biol, vol.35, pp.3941-3942, 2013.

T. Fujii, K. Shimada, S. Anai, K. Fujimoto, and N. Konishi, ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression, Cancer Sci, vol.104, pp.321-327, 2013.

J. W. Lee, F. Aminkeng, A. P. Bhavsar, K. Shaw, B. C. Carleton et al., The Emerging Era of Pharmacogenomics: Current Successes, Future Potential, and Challenges, Clin Genet, 2014.

C. Ono, H. Kikkawa, A. Suzuki, M. Suzuki, Y. Yamamoto et al., Clinical impact of genetic variants of drug transporters in different ethnic groups within and across regions, Pharmacogenomics, vol.14, pp.1745-1764, 2013.

K. Sai and Y. Saito, Ethnic differences in the metabolism, toxicology and efficacy of three anticancer drugs, Expert Opin Drug Metab Toxicol, vol.7, pp.967-988, 2011.

C. Y. Chang, H. W. Chang, C. M. Chen, C. Y. Lin, C. P. Chen et al., MUC4 gene polymorphisms associate with endometriosis development and endometriosis-related infertility, BMC Med, vol.9, p.19, 2011.

N. Saeki, A. Saito, I. J. Choi, K. Matsuo, S. Ohnami et al., A functional single nucleotide polymorphism in mucin 1, pp.892-902, 2011.

Y. Horimasu, N. Hattori, N. Ishikawa, S. Kawase, S. Tanaka et al., Different MUC1 gene polymorphisms in German and Japanese ethnicities affect serum KL-6 levels, Respir Med, vol.106, pp.1756-1764, 2012.

J. Fowler, L. Vinall, and D. Swallow, Polymorphism of the human muc genes, Front Biosci, vol.6, pp.1207-1215, 2001.

F. Carvalho, R. Seruca, L. David, A. Amorim, M. Seixas et al., Sobrinho-Simoes, MUC1 gene polymorphism and gastric cancer--an epidemiological study, Glycoconj J, vol.14, pp.107-111, 1997.

J. R. Davies, C. Wickstrom, and D. J. Thornton, Gel-forming and cell-associated mucins: preparation for structural and functional studies, Methods Mol Biol, vol.842, pp.27-47, 2012.

L. Yin, R. Ahmad, M. Kosugi, T. Kufe, B. Vasir et al., Survival of human multiple myeloma cells is dependent on MUC1 C-terminal transmembrane subunit oncoprotein function, Mol Pharmacol, vol.78, pp.166-174, 2010.

A. Kharbanda, H. Rajabi, C. Jin, D. Raina, and D. Kufe, Oncogenic MUC1-C Promotes Tamoxifen Resistance in Human Breast Cancer, Mol Cancer Res, vol.11, pp.714-723, 2013.

D. Raina, Y. Uchida, A. Kharbanda, H. Rajabi, G. Panchamoorthy et al., Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells, Oncogene, 2013.

Y. Uchida, D. Raina, S. Kharbanda, and D. Kufe, Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells, Cancer Biol Ther, vol.14, pp.127-134, 2013.

D. Raina, M. Kosugi, R. Ahmad, G. Panchamoorthy, H. Rajabi et al.,

J. Shapiro, S. Supko, D. Kharbanda, and . Kufe, Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells, Mol Cancer Ther, vol.10, pp.806-816, 2011.

C. K. Tang and V. Apostolopoulos, Strategies used for MUC1 immunotherapy: preclinical studies, Expert Rev Vaccines, vol.7, pp.951-962, 2008.

C. K. Tang, M. Katsara, and V. Apostolopoulos, Strategies used for MUC1 immunotherapy: human clinical studies, Expert Rev Vaccines, vol.7, pp.963-975, 2008.

V. Lakshminarayanan, P. Thompson, M. A. Wolfert, T. Buskas, J. M. Bradley et al., Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine, Proc Natl Acad Sci U S A, vol.109, pp.261-266, 2011.

R. E. Beatson, J. Taylor-papadimitriou, and J. M. Burchell, MUC1 immunotherapy, pp.305-327, 2010.

N. Liu, C. Zhou, J. Zhao, and Y. Chen, Reversal of paclitaxel resistance in epithelial ovarian carcinoma cells by a MUC1 aptamer-let-7i chimera, Cancer Invest, vol.30, pp.577-582, 2012.

F. Dai, Y. Zhang, X. Zhu, N. Shan, and Y. Chen, The anti-chemoresistant effect and mechanism of MUC1 aptamer-miR-29b chimera in ovarian cancer, Gynecol Oncol, vol.131, pp.451-459, 2013.

M. J. Duffy, Tumor markers in clinical practice: a review focusing on common solid cancers, Med Princ Pract, vol.22, pp.4-11, 2013.

L. F. De-campos-lobato, D. W. Dietz, L. Stocchi, J. D. Vogel, I. C. Lavery et al., Clinical implications of acellular mucin pools in resected rectal cancer with pathological complete response to neoadjuvant chemoradiation, Colorectal Dis, vol.14, pp.62-67, 2012.

K. D. Smith, D. Tan, P. Das, G. J. Chang, K. Kattepogu et al., Clinical significance of acellular mucin in rectal adenocarcinoma patients with a pathologic complete response to preoperative chemoradiation, Ann Surg, pp.261-264, 2010.

J. Shia, M. Mcmanus, J. G. Guillem, T. Leibold, Q. Zhou et al., Significance of acellular mucin pools in rectal carcinoma after neoadjuvant chemoradiotherapy, Am J Surg Pathol, vol.35, pp.127-134, 2011.

R. A. Budiu, G. Mantia-smaldone, E. Elishaev, T. Chu, J. Thaller et al., Soluble MUC1 and serum MUC1-specific antibodies are potential prognostic biomarkers for platinum-resistant ovarian cancer, Cancer Immunol Immunother, vol.60, pp.975-984, 2011.

S. Aubert, I. Van-seuningen, and X. Leroy, Mucins in the uro-genital tract. Potential for therapeutic approaches using mucins, The Epithelial Mucins: Structure/Function. Roles in Cancer and Inflammatory Diseases, pp.249-272, 2008.

D. Di-gioia, V. Heinemann, D. Nagel, M. Untch, S. Kahlert et al., Kinetics of CEA and CA15-3 correlate with treatment response in patients undergoing chemotherapy for metastatic breast cancer (MBC), Tumour Biol, vol.32, pp.777-785, 2011.

J. P. Cheng, Y. Yan, X. Y. Wang, Y. L. Lu, Y. H. Yuan et al., MUC1-positive circulating tumor cells and MUC1 protein predict chemotherapeutic efficacy in the treatment of metastatic breast cancer, Chin J Cancer, vol.30, pp.54-61, 2011.