J. D. Browning and J. D. Horton, Molecular mediators of hepatic steatosis and liver injury, J Clin Invest, vol.114, pp.147-52, 2004.

W. Wahli and L. Michalik, PPARs at the crossroads of lipid signaling and inflammation, Trends Endocrinol Metab, vol.23, pp.351-63, 2012.

O. Braissant, F. Foufelle, and C. Scotto, Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat, Endocrinology, vol.137, pp.354-66, 1996.

C. Postic and J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice, J Clin Invest, vol.118, pp.829-867, 2008.

S. Kersten, Integrated physiology and systems biology of PPAR?, Mol Metab, vol.3, pp.354-71, 2014.

S. S. Lee, T. Pineau, and J. Drago, Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators, Mol Cell Biol, vol.15, pp.3012-3034, 1995.

S. Kersten, J. Seydoux, and J. M. Peters, Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting, J Clin Invest, vol.103, pp.1489-98, 1999.

D. L. Kroetz, P. Yook, and P. Costet, Peroxisome proliferator-activated receptor ? controls the hepatic CYP4A induction adaptive response to starvation and diabetes, J Biol Chem, vol.273, pp.31581-31590, 1998.

D. Patsouris, S. Mandard, and P. J. Voshol, PPARalpha governs glycerol metabolism, J Clin Invest, vol.114, pp.94-103, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00546124

J. M. Lee, M. Wagner, and R. Xiao, Nutrient-sensing nuclear receptors coordinate autophagy, Nature, vol.516, pp.112-127, 2014.

M. K. Badman, P. Pissios, and A. R. Kennedy, Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states, Cell Metab, vol.5, pp.426-463, 2007.

T. Inagaki, P. Dutchak, and G. Zhao, Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21, Cell Metab, vol.5, pp.415-440, 2007.

A. Kharitonenkov and A. C. Adams, Inventing new medicines: The FGF21 story, Mol Metab, vol.3, pp.221-230, 2014.

M. Pawlak, P. Lefebvre, and B. Staels, Molecular mechanism of PPAR? action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease, J Hepatol, vol.62, pp.720-753, 2015.

R. Loomba and A. J. Sanyal, The global NAFLD epidemic, Nat Rev Gastroenterol Hepatol, vol.10, pp.686-90, 2013.

A. Wree, L. Broderick, and A. Canbay, From NAFLD to NASH to cirrhosis-new insights into disease mechanisms, Nat Rev Gastroenterol Hepatol, vol.10, pp.627-663, 2013.

K. L. Donnelly, C. I. Smith, and S. J. Schwarzenberg, Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease, J Clin Invest, vol.115, pp.1343-51, 2005.

M. A. Abdelmegeed, S. H. Yoo, and L. E. Henderson, PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver, J Nutr, vol.141, pp.603-613, 2011.

P. Costet, C. Legendre, and J. Moreé, Peroxisome proliferator-activated receptor ?-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis, J Biol Chem, vol.273, pp.29577-85, 1998.

E. Ip, G. C. Farrell, and G. Robertson, Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice, Hepatology, vol.38, pp.123-155, 2003.

B. Staels, A. Rubenstrunk, and B. Noel, Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, Hepatology, vol.58, pp.1941-52, 2013.

S. Francque, A. Verrijken, and S. Caron, PPAR? gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis, J Hepatol, vol.63, pp.164-73, 2015.

S. Liu, J. D. Brown, and K. J. Stanya, A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use, Nature, vol.502, pp.550-554, 2013.

T. Goto, J. Y. Lee, and A. Teraminami, Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes, J Lipid Res, vol.52, pp.873-84, 2011.

A. Tsuchida, T. Yamauchi, and S. Takekawa, Peroxisome proliferator-activated receptor (PPAR)? activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPAR?, PPAR?, and their combination, Diabetes, vol.54, pp.3358-70, 2005.

M. Bünger, H. M. Van-den-bosch, and J. Van-der-meijde, Genome-wide analysis of PPARalpha activation in murine small intestine, Physiol Genomics, vol.30, pp.192-204, 2007.

M. C. Sugden, K. Bulmer, and G. F. Gibbons, Role of peroxisome proliferator-activated receptor-alpha in the mechanism underlying changes in renal pyruvate dehydrogenase kinase isoform 4 protein expression in starvation and after refeeding, Arch Biochem Biophys, vol.395, pp.246-52, 2001.

G. Haemmerle, T. Moustafa, and G. Woelkart, ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-? and PGC-1, Nat Med, vol.17, pp.1076-85, 2011.

R. C. Gentleman, V. J. Carey, and D. M. Bates, Bioconductor: open software development for computational biology and bioinformatics, Genome Biol, vol.5, p.80, 2004.

F. M. Fisher, P. C. Chui, and I. A. Nasser, Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets, Gastroenterology, vol.147, pp.1073-83, 2014.

D. G. Cotter, B. Ercal, and X. Huang, Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia, J Clin Invest, vol.124, pp.5175-90, 2014.

F. G. Hegardt, Transcriptional regulation of mitochondrial HMG-CoA synthase in the control of ketogenesis, Biochimie, vol.80, pp.803-809, 1998.

A. Sahebkar, G. T. Chew, and G. F. Watts, New peroxisome proliferator-activated receptor agonists: potential treatments for atherogenic dyslipidemia and non-alcoholic fatty liver disease, Expert Opin Pharmacother, vol.15, pp.493-503, 2014.

M. V. Chakravarthy, I. J. Lodhi, and L. Yin, Identification of a physiologically relevant endogenous ligand for PPARalpha in liver, Cell, vol.138, pp.476-88, 2009.

M. V. Chakravarthy, Z. Pan, and Y. Zhu, New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis, Cell Metab, vol.1, pp.309-331, 2005.

W. Chen, H. Zhou, and S. Liu, Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice, PLoS ONE, vol.8, p.82526, 2013.

S. Caspar-bauguil, C. I. Kolditz, and C. Lefort, Fatty acids from fat cell lipolysis do not activate an inflammatory response but are stored as triacylglycerols in adipose tissue macrophages, Diabetologia, vol.58, pp.2627-2663, 2015.

L. M. Sanderson, T. Degenhardt, and A. Koppen, Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) but not PPARalpha serves as a plasma free fatty acid sensor in liver, Mol Cell Biol, vol.29, pp.6257-67, 2009.

P. Jha, T. Claudel, and A. Baghdasaryan, Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia, Hepatology, vol.59, pp.858-69, 2014.

O. Ziouzenkova, S. Perrey, and L. Asatryan, Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase, Proc Natl Acad Sci, vol.100, pp.2730-2735, 2003.

Y. S. Jo, D. Ryu, and A. Maida, Phosphorylation of the nuclear receptor corepressor 1 by protein kinase B switches its corepressor targets in the liver in mice, Hepatology, vol.62, pp.1606-1624, 2015.

D. Jaeger, G. Schoiswohl, and P. Hofer, Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids, J Hepatol, vol.63, pp.437-482, 2015.

K. R. Markan, M. C. Naber, and M. K. Ameka, Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding, Diabetes, vol.63, pp.4057-63, 2014.

D. Sousa-coelho, A. L. Marrero, P. F. Haro, and D. , Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation, Biochem J, vol.443, pp.165-71, 2012.

K. Iizuka, J. Takeda, and Y. Horikawa, Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes, FEBS Lett, vol.583, pp.2882-2888, 2009.

H. Kim, R. Mendez, and Z. Zheng, Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor ? to regulate metabolic hormone FGF21, Endocrinology, vol.155, pp.769-82, 2014.

P. Lu, J. Yan, and K. Liu, Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21, Hepatology, vol.61, pp.1908-1927, 2015.

T. Uebanso, Y. Taketani, and H. Yamamoto, Liver X receptor negatively regulates fibroblast growth factor 21 in the fatty liver induced by cholesterol-enriched diet, J Nutr Biochem, vol.23, pp.785-90, 2012.

N. Tanaka, S. Takahashi, and Z. Z. Fang, Role of white adipose lipolysis in the development of NASH induced by methionine-and choline-deficient diet, Biochim Biophys Acta, vol.1841, pp.1596-607, 2014.

P. Jha, A. Knopf, and H. Koefeler, Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH), Biochim Biophys Acta, vol.1842, pp.959-70, 2014.