R. Kazancio-glu, Risk factors for chronic kidney disease: an update, Kidney International Supplements, vol.3, issue.4, pp.368-371, 2013.

H. L. Reeves, M. Y. Zaki, and C. P. Day, Hepatocellular carcinoma in obesity, type 2 diabetes, and NAFLD, Digestive Diseases and Sciences, vol.61, issue.5, pp.1234-1245, 2016.

J. E. Schaffer, Lipotoxicity: when tissues overeat, Current Opinion in Lipidology, vol.14, issue.3, pp.281-287, 2003.

M. Asrih and F. R. Jornayvaz, Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance, Journal of Endocrinology, vol.218, issue.3, pp.25-36, 2013.

I. A. Bobulescu, Renal lipid metabolism and lipotoxicity, Current Opinion in Nephrology and Hypertension, vol.19, issue.4, pp.393-402, 2010.

M. Herman-edelstein, P. Scherzer, A. Tobar, M. Levi, and U. Gafter, Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy, Journal of Lipid Research, vol.55, issue.3, pp.561-572, 2014.

E. J. Park, J. H. Lee, G. Yu, G. He, S. R. Ali et al., Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression, Cell, vol.140, issue.2, pp.197-208, 2010.

L. A. Streba, C. C. Vere, I. Rogoveanu, and C. T. Streba, Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: an open question, World Journal of Gastroenterology e WJG, vol.21, issue.14, pp.4103-4110, 2015.

A. P. De-vries, P. Ruggenenti, X. Z. Ruan, M. Praga, J. M. Cruzado et al., Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease, The Lancet e Diabetes & Endocrinology, vol.2, issue.5, pp.417-426, 2014.

M. Gjorgjieva, M. Raffin, A. Duchampt, A. Perry, A. Stefanutti et al., Progressive development of renal cysts in glycogen storage disease type I, Human Molecular Genetics, vol.25, issue.17, pp.3784-3797, 2016.

E. Mutel, A. Abdul-wahed, N. Ramamonjisoa, A. Stefanutti, I. Houberdon et al., Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas, Journal of Hepatology, vol.54, issue.3, pp.529-537, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00575314

J. Y. Chou, The molecular basis of type 1 glycogen storage diseases, Current Molecular Medicine, vol.1, issue.1, pp.25-44, 2001.

R. Froissart, M. Piraud, A. M. Boudjemline, C. Vianey-saban, F. Petit et al., Glucose-6-phosphatase deficiency, Orphanet Journal of Rare Diseases, vol.6, issue.1, p.27, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00668423

P. S. Kishnani, S. L. Austin, J. E. Abdenur, P. Arn, D. S. Bali et al., Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics, Genetics in Medicine e Official Journal of the American College of Medical Genetics, vol.16, issue.11, p.1, 2014.

M. Soty, A. Gautier-stein, F. Rajas, and G. Mithieux, Gut-brain glucose signaling in energy homeostasis, Cell Metabolism, vol.25, issue.6, pp.1231-1242, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02339600

M. Gjorgjieva, M. H. Oosterveer, G. Mithieux, and F. Rajas, Mechanisms by which metabolic reprogramming in GSD1 liver generates a favorable tumorigenic environment, Journal of Inborn Errors of Metabolism and Screening, vol.4, 2016.

J. Clar, B. Gri, J. Calderaro, M. Birling, Y. Hérault et al., Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy, Kidney International, vol.86, issue.4, pp.747-756, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01350891

J. P. Rake, G. Visser, P. Labrune, J. V. Leonard, K. Ullrich et al., Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I), European Journal of Pediatrics, vol.161, pp.20-34, 2002.

R. H. Bandsma, B. H. Prinsen, M. De-sain-van-der-velden, J. Rake, T. Boer et al., Increased de novo lipogenesis and delayed conversion of large VLDL into intermediate density lipoprotein particles contribute to hyperlipidemia in glycogen storage disease type 1a, Pediatric Research, vol.63, issue.6, pp.702-707, 2008.

F. Rajas, P. Labrune, and G. Mithieux, Glycogen storage disease type 1 and diabetes: learning by comparing and contrasting the two disorders, Diabetes & Metabolism, vol.39, issue.5, pp.377-387, 2013.

D. Reijngoud, Flux analysis of inborn errors of metabolism, Journal of Inherited Metabolic Disease, vol.41, issue.3, pp.309-328, 2018.

R. H. Bandsma, G. P. Smit, and F. Kuipers, Disturbed lipid metabolism in glycogen storage disease type 1, European Journal of Pediatrics, vol.161, issue.1, pp.65-69, 2014.

T. G. Derks and M. Van-rijn, Lipids in hepatic glycogen storage diseases: pathophysiology, monitoring of dietary management and future directions, Journal of Inherited Metabolic Disease, vol.38, issue.3, pp.537-543, 2015.

C. Postic and J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice, Journal of Clinical Investigation, vol.118, issue.3, pp.829-838, 2008.

J. Calderaro, P. Labrune, G. Morcrette, S. Rebouissou, D. Franco et al., Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I, Journal of Hepatology, vol.58, issue.2, pp.350-357, 2013.

P. Labrune, P. Trioche, I. Duvaltier, P. Chevalier, and M. Odièvre, Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature, Journal of Pediatric Gastroenterology and Nutrition, vol.24, issue.3, pp.276-279, 1997.

M. Marcuccilli and M. Chonchol, NAFLD and chronic kidney disease, International Journal of Molecular Sciences, vol.17, issue.4, p.562, 2016.

D. H. Sinn, D. Kang, H. R. Jang, S. Gu, S. J. Cho et al., Development of chronic kidney disease in patients with non-alcoholic fatty liver disease: a cohort study, Journal of Hepatology, vol.67, issue.6, pp.1274-1280, 2017.

G. Targher and C. D. Byrne, Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease, Nature Reviews Nephrology, vol.13, issue.5, pp.297-310, 2017.

F. Rajas, H. Jourdan-pineau, A. Stefanutti, E. A. Mrad, P. B. Iynedjian et al., Immunocytochemical localization of glucose 6-phosphatase and cytosolic phosphoenolpyruvate carboxykinase in gluconeogenic tissues reveals unsuspected metabolic zonation, Histochemistry and Cell Biology, vol.127, issue.5, pp.555-565, 2007.

G. Mithieux, L. Guignot, J. Bordet, and N. Wiernsperger, Intrahepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet, Diabetes, vol.51, issue.1, pp.139-143, 2002.

F. Rajas, J. Clar, A. Gautier-stein, and G. Mithieux, Lessons from new mouse models of glycogen storage disease type 1a in relation to the time course and organ specificity of the disease, Journal of Inherited Metabolic Disease, vol.38, issue.3, pp.521-527, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01350960

C. Duval, M. Müller, and S. Kersten, PPARalpha and dyslipidemia. Biochimica et, Biophysica Acta, vol.1771, issue.8, pp.961-971, 2007.

S. Kersten, Integrated physiology and systems biology of PPARa, Molecular Metabolism, vol.3, issue.4, pp.354-371, 2014.

A. Montagner, A. Polizzi, E. Fouché, S. Ducheix, Y. Lippi et al., Liver PPARa is crucial for whole-body fatty acid homeostasis and is protective against NAFLD, Gut, vol.65, issue.7, pp.1202-1214, 2016.

M. Pawlak, P. Lefebvre, and B. Staels, Molecular mechanism of PPARa action and its impact on lipid metabolism, inflammation and fibrosis in nonalcoholic fatty liver disease, Journal of Hepatology, vol.62, issue.3, pp.720-733, 2015.

M. H. Oosterveer, A. Grefhorst, T. H. Van-dijk, R. Havinga, B. Staels et al., Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice, Journal of Biological Chemistry, vol.284, issue.49, pp.34036-34044, 2009.

C. C. Van-der-hoogt, W. De-haan, M. Westerterp, M. Hoekstra, G. M. Dallinga-thie et al., Fenofibrate increases HDL-cholesterol by reducing cholesteryl ester transfer protein expression, Journal of Lipid Research, vol.48, issue.8, pp.1763-1771, 2007.

M. K. Badman, P. Pissios, A. R. Kennedy, G. Koukos, J. S. Flier et al., Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states, Cell Metabolism, vol.5, issue.6, pp.426-437, 2007.

B. S. Hijmans, A. Boss, T. H. Van-dijk, M. Soty, H. Wolters et al., Hepatocytes contribute to residual glucose production in a mouse model for glycogen storage disease type Ia, Hepatology, vol.66, issue.6, pp.2042-2054, 2017.

A. R. Soltis, S. Motola, S. Vernia, C. W. Ng, N. J. Kennedy et al., Hyper-and hypo-nutrition studies of the hepatic transcriptome and epigenome suggest that PPARa regulates anaerobic glycolysis, Scientific Reports, vol.7, issue.1, p.174, 2017.

J. A. Balfour, D. Mctavish, and R. C. Heel, Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia, Drugs, vol.40, issue.2, pp.260-290, 1990.

A. Abdul-wahed, A. Gautier-stein, S. Casteras, M. Soty, D. Roussel et al., A link between hepatic glucose production and peripheral energy metabolism via hepatokines, Molecular Metabolism, vol.3, issue.5, pp.531-543, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01350728

B. L. Farah, R. A. Sinha, Y. Wu, B. K. Singh, A. Lim et al., Hepatic mitochondrial dysfunction is a feature of glycogen storage disease type Ia (GSDIa), Scientific Reports, vol.7, p.44408, 2017.

K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt et al., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease, Journal of Clinical Investigation, vol.115, issue.5, pp.1343-1351, 2005.

E. Mutel, A. Gautier-stein, A. Abdul-wahed, M. Amigó-correig, C. Zitoun et al., Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice, Diabetes, vol.60, issue.12, pp.3121-3131, 2011.

R. Cheng, L. Ding, X. He, Y. Takahashi, and J. Ma, Interaction of PPARa with the canonic wnt pathway in the regulation of renal fibrosis, Diabetes, vol.65, issue.12, pp.3730-3743, 2016.

Y. A. Hong, J. H. Lim, M. Y. Kim, T. W. Kim, Y. Kim et al., Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1a in db/db mice, PLoS One, vol.9, issue.5, p.96147, 2014.

L. Li, N. Emmett, D. Mann, and X. Zhao, Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-kB and transforming growth factor-b1/Smad3 in diabetic nephropathy, 2010.

, Experimental Biology and Medicine, vol.235, issue.3, pp.383-391

C. W. Park, Y. Zhang, X. Zhang, J. Wu, L. Chen et al., PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice, Kidney International, vol.69, issue.9, pp.1511-1517, 2006.

M. Sohn, K. Kim, M. J. Uddin, G. Lee, I. Hwang et al., Delayed treatment with fenofibrate protects against high-fat diet-induced kidney injury in mice: the possible role of AMPK autophagy, American Journal of Physiology e Renal Physiology, vol.312, issue.2, pp.323-334, 2017.

Y. Tanaka, S. Kume, S. Araki, K. Isshiki, M. Chin-kanasaki et al., Fenofibrate, a PPARa agonist, has renoprotective effects in mice by enhancing renal lipolysis, Kidney International, vol.79, issue.8, pp.871-882, 2011.

D. Koya and G. L. King, Protein kinase C activation and the development of diabetic complications, Diabetes, vol.47, issue.6, pp.859-866, 1998.

M. S. Kostapanos, A. Kei, and M. S. Elisaf, Current role of fenofibrate in the prevention and management of non-alcoholic fatty liver disease, World Journal of Hepatology, vol.5, issue.9, pp.470-478, 2013.

J. N. Van-der-veen, S. Lingrell, X. Gao, A. Takawale, Z. Kassiri et al., Fenofibrate, but not ezetimibe, prevents fatty liver disease in mice lacking phosphatidylethanolamine N-methyltransferase, Journal of Lipid Research, vol.58, issue.4, pp.656-667, 2017.

G. Baffy, Hepatocellular carcinoma in non-alcoholic fatty liver disease: epidemiology, pathogenesis, and prevention, Journal of Clinical and Translational Hepatology, vol.1, issue.2, pp.131-137, 2013.

A. Peeters and M. Baes, Role of PPARa in hepatic carbohydrate metabolism, PPAR Research, 2010.

G. Targher and S. M. Francque, A fatty liver leads to decreased kidney function, Journal of Hepatology, vol.67, issue.6, pp.1137-1139, 2017.

G. A. Kaysen, Lipid-lowering therapy in CKD: should we use it and in which patients, Blood Purification, vol.43, issue.1e3, pp.196-199, 2017.

M. S. Kostapanos, M. Florentin, and M. S. Elisaf, Fenofibrate and the kidney: an overview, European Journal of Clinical Investigation, vol.43, issue.5, pp.522-531, 2013.

G. Musso, M. Cassader, and R. Gambino, Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies, Nature Reviews Drug Discovery, vol.15, issue.4, pp.249-274, 2016.

M. Yaghoubi, K. Mansell, H. Vatanparastc, M. Steeves, W. Zeng et al., Effects of pharmacy-based interventions on the control and management of diabetes in adults: a systematic review and meta-analysis, Canadian Journal of Diabetes, vol.41, issue.6, pp.628-641, 2017.

D. Lewis and C. Wanner, Diabetes: should we use fibrates in patients with diabetes and mild CKD?, Nature Reviews Nephrology, vol.8, issue.4, pp.201-202, 2012.

R. Ting, A. C. Keech, P. L. Drury, M. W. Donoghoe, J. Hedley et al., Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD Study, Diabetes Care, vol.35, issue.2, pp.218-225, 2012.

S. Kersten and R. Stienstra, The role and regulation of the peroxisome proliferator activated receptor alpha in human liver, Biochimie, vol.136, pp.75-84, 2017.

B. Staels, A. Rubenstrunk, B. Noel, G. Rigou, P. Delataille et al., Hepatoprotective effects of the dual peroxisome proliferatoractivated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, Hepatology, vol.58, issue.6, pp.1941-1952, 2013.