, National Health Institute, 2018.

, Global report on diabetes. World Health Organization, 2016.

, Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19$2 million participants, Lancet, vol.387, pp.1377-1396, 2016.

G. S. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.444, pp.860-867, 2006.

E. Treiner, L. Duban, S. Bahram, M. Radosavljevic, V. Wanner et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1, Nature, vol.422, issue.6928, pp.164-169, 2003.

E. Martin, E. Treiner, L. Duban, L. Guerri, H. Laude et al., Stepwise development of MAIT cells in mouse and human, Public Library of Science Biology, vol.7, issue.3, p.54, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00707793

V. Voillet, M. Buggert, C. K. Slichter, J. D. Berkson, F. Mair et al., Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions, Journal of clinical investigation insight, vol.3, issue.7, p.98487, 2018.

M. C. Gold, T. Eid, S. Smyk-pearson, Y. Eberling, G. M. Swarbrick et al., Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress, Mucosal Immunology, vol.6, issue.1, pp.35-44, 2013.

H. Koay, N. A. Gherardin, A. Enders, L. Loh, L. K. Mackay et al., A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage, Nature Immunology, vol.17, issue.11, pp.1300-1311, 2016.

R. Reantragoon, A. J. Corbett, I. G. Sakala, N. A. Gherardin, J. B. Furness et al., Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells, The Journal of Experimental Medicine, vol.210, issue.11, pp.2305-2320, 2013.

M. Lepore, A. Kalinichenko, A. Kalinicenko, A. Colone, B. Paleja et al., Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRb repertoire, Nature Communications, vol.5, p.3866, 2014.

M. C. Gold, J. E. Mclaren, J. A. Reistetter, S. Smyk-pearson, K. Ladell et al., MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage, The Journal of Experimental Medicine, vol.211, issue.8, pp.1601-1610, 2014.

L. Bourhis, L. Martin, E. Piguillet, I. Guihot, A. Froux et al., Antimicrobial activity of mucosal-associated invariant T cells, Nature Immunology, vol.11, issue.8, pp.701-708, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550333

R. J. Napier, E. J. Adams, M. C. Gold, and D. M. Lewinsohn, The role of mucosal associated invariant T cells in antimicrobial immunity, Frontiers in Immunology, vol.6, p.344, 2015.

B. Van-wilgenburg, I. Scherwitzl, E. C. Hutchinson, T. Leng, A. Kurioka et al., MAIT cells are activated during human viral infections, Nature Communications, vol.7, p.11653, 2016.

O. Rouxel and A. Lehuen, Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases, Immunology and Cell Biology, vol.96, issue.6, pp.618-629, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02339443

S. Porcelli, C. E. Yockey, M. B. Brenner, and S. P. Balk, Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain, The Journal of Experimental Medicine, vol.178, issue.1, pp.1-16, 1993.

F. Tilloy, E. Treiner, S. H. Park, C. Garcia, F. Lemonnier et al., An invariant T cell receptor alpha chain defines a novel TAPindependent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals, The Journal of Experimental Medicine, vol.189, issue.12, 1999.

J. Jo, A. T. Tan, J. E. Ussher, E. Sandalova, X. Tang et al., Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver, Public Library of Science Pathogens, vol.10, issue.6, p.1004210, 2014.

M. Dusseaux, E. Martin, N. Serriari, I. Piguillet, V. Premel et al., Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells, Blood, vol.117, issue.4, pp.1250-1259, 2011.

M. C. Gold, S. Cerri, S. Smyk-pearson, M. E. Cansler, T. M. Vogt et al., Human mucosal associated invariant T cells detect bacterially infected cells, Public Library of Science Biology, vol.8, issue.6, p.1000407, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00707307

A. Rahimpour, H. F. Koay, A. Enders, R. Clanchy, S. B. Eckle et al., Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers, The Journal of Experimental Medicine, vol.212, issue.7, pp.1095-1108, 2015.

A. Kurioka, L. J. Walker, P. Klenerman, and C. B. Willberg, MAIT cells: new guardians of the liver, Clinical and Translational Immunology, vol.5, issue.8, p.98, 2016.

P. K. Sharma, E. B. Wong, R. J. Napier, W. R. Bishai, T. Ndung'u et al., High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells, Immunology, vol.145, issue.3, pp.443-453, 2015.

K. Franciszkiewicz, M. Salou, F. Legoux, Q. Zhou, Y. Cui et al., MHC class I-related molecule, MR1, and mucosal-associated invariant T cells, Immunological Reviews, vol.272, issue.1, pp.120-138, 2016.

N. Seach, L. Guerri, L. Le-bourhis, Y. Mburu, Y. Cui et al., Double-positive thymocytes select mucosal-associated invariant T cells, Journal of Immunology, vol.191, issue.12, pp.6002-6009, 1950.

L. Kjer-nielsen, O. Patel, A. J. Corbett, J. Le-nours, B. Meehan et al., MR1 presents microbial vitamin B metabolites to MAIT cells, Nature, vol.491, issue.7426, pp.717-723, 2012.

J. E. Ussher, M. Bilton, E. Attwod, J. Shadwell, R. Richardson et al., CD161þþ CD8þ T cells, including the MAIT cell subset, are specifically activated by IL-12þIL-18 in a TCR-independent manner, European Journal of Immunology, vol.44, issue.1, pp.195-203, 2014.

A. Kurioka, J. E. Ussher, C. Cosgrove, C. Clough, J. R. Fergusson et al., MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets, Mucosal Immunology, vol.8, issue.2, pp.429-440, 2015.

L. Bourhis, L. Dusseaux, M. Bohineust, A. Bessoles, S. Martin et al., MAIT cells detect and efficiently lyse bacteriallyinfected epithelial cells, Public Library of Science Pathogens, vol.9, issue.10, p.1003681, 2013.

M. L. Balmer, E. Slack, A. De-gottardi, M. A. Lawson, S. Hapfelmeier et al., The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota, Science Translational Medicine, vol.6, issue.237, pp.237-66, 2014.

H. C. Jeffery, B. Van-wilgenburg, A. Kurioka, K. Parekh, K. Stirling et al., Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1, Journal of Hepatology, vol.64, issue.5, pp.1118-1127, 2016.

X. Tang, J. Jo, A. T. Tan, E. Sandalova, A. Chia et al., IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells, Journal of Immunology, vol.190, issue.7, pp.3142-3152, 2013.

Y. Li, B. Huang, X. Jiang, W. Chen, J. Zhang et al., Mucosalassociated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization, Frontiers in Immunology, vol.9, 1994.

K. Böttcher, K. Rombouts, F. Saffioti, D. Roccarina, M. Rosselli et al., MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation, Hepatology, vol.68, issue.1, pp.172-186, 2018.

P. Hegde, E. Weiss, V. Paradis, J. Wan, M. Mabire et al., Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver, Nature Communications, vol.9, issue.1, p.2146, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02339519

A. Riva, V. Patel, A. Kurioka, H. C. Jeffery, G. Wright et al., Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease, Gut, vol.67, issue.5, pp.918-930, 2018.

A. Katsarou, S. Gudbjörnsdottir, A. Rawshani, D. Dabelea, E. Bonifacio et al., Type 1 diabetes mellitus, Nature Reviews Disease Primers, vol.3, p.17016, 2017.

O. Rouxel, J. Da-silva, L. Beaudoin, I. Nel, C. Tard et al., Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes, Nature Immunology, vol.18, issue.12, pp.1321-1331, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02339318

E. Kuric, L. Krogvold, K. F. Hanssen, K. Dahl-jørgensen, O. Skog et al., No evidence for presence of mucosal-associated invariant T cells in the insulitic lesions in patients recently diagnosed with type 1 diabetes, The American Journal of Pathology, vol.188, issue.8, pp.1744-1748, 2018.

I. Magalhaes, K. Pingris, C. Poitou, S. Bessoles, N. Venteclef et al., Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients, The Journal of Clinical Investigation, vol.125, issue.4, pp.1752-1762, 2015.

E. Carolan, L. M. Tobin, B. A. Mangan, M. Corrigan, G. Gaoatswe et al., Altered distribution and increased IL-17 production by mucosalassociated invariant T cells in adult and childhood obesity, Journal of Immunology, vol.194, issue.12, pp.5775-5780, 2015.

S. Touch, K. E. Assmann, J. Aron-wisnewsky, F. Marquet, C. Rouault et al., Mucosal-associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders, Experimental Biology journal, vol.32, issue.9, 2018.

N. Serriari, M. Eoche, L. Lamotte, J. Lion, M. Fumery et al., Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases, Clinical and Experimental Immunology, vol.176, issue.2, pp.266-274, 2014.

E. Gülden, N. Palm, and K. C. Herold, MAIT cells: a link between gut integrity and type 1 diabetes, Cell Metabolism, vol.26, issue.6, pp.813-815, 2017.

T. Vatanen, E. A. Franzosa, R. Schwager, S. Tripathi, T. D. Arthur et al., The human gut microbiome in early-onset type 1 diabetes from the TEDDY study, Nature, vol.562, issue.7728, pp.589-594, 2018.

R. Corrêa-oliveira, J. L. Fachi, A. Vieira, F. T. Sato, and M. A. Vinolo, Regulation of immune cell function by short-chain fatty acids, Clinical and Translational Immunology, vol.5, issue.4, p.73, 2016.

P. Hartmann, C. T. Seebauer, and B. Schnabl, Alcoholic liver disease: the gut microbiome and liver cross talk, Alcoholism Clinical and Experimental Research, vol.39, issue.5, pp.763-775, 2015.

J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu et al., A metagenomewide association study of gut microbiota in type 2 diabetes, Nature, vol.490, issue.7418, pp.55-60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01204262

J. Peng, S. Narasimhan, J. R. Marchesi, A. Benson, F. S. Wong et al., Long term effect of gut microbiota transfer on diabetes development, Journal of Autoimmunity, vol.53, pp.85-94, 2014.

F. Dotta, S. Censini, A. G. Van-halteren, L. Marselli, M. Masini et al., Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients, Proceedings of the National Academy of Sciences of the United States of America, vol.104, issue.12, pp.5115-5120, 2007.

A. Lehuen, J. Diana, P. Zaccone, and A. Cooke, Immune cell crosstalk in type 1 diabetes, Nature Reviews Immunology, vol.10, issue.7, pp.501-513, 2010.

N. Tai, F. S. Wong, and L. Wen, The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes, Journal of Autoimmunity, vol.71, pp.26-34, 2016.

J. Diana, Y. Simoni, L. Furio, L. Beaudoin, B. Agerberth et al., Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes, Nature Medicine, vol.19, issue.1, pp.65-73, 2013.

K. Brandl and B. Schnabl, Intestinal microbiota and nonalcoholic steatohepatitis, Current Opinion in Gastroenterology, vol.33, issue.3, pp.128-133, 2017.

A. D. Kostic, D. Gevers, H. Siljander, T. Vatanen, T. Hyötyläinen et al., The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes, Cell Host and Microbe, vol.17, issue.2, pp.260-273, 2015.

J. Boursier, O. Mueller, M. Barret, M. Machado, L. Fizanne et al., The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota, Hepatology, vol.63, issue.3, pp.764-775, 2016.