M. A. Atkinson, G. S. Eisenbarth, and A. W. Michels, Type 1 diabetes, Lancet, vol.383, pp.69-82, 2014.

J. Diana, Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes, Nat. Med, vol.19, pp.65-73, 2013.

M. S. Anderson and J. A. Bluestone, The NOD mouse: a model of immune dysregulation, Annu. Rev. Immunol, vol.23, pp.447-485, 2005.

A. Lehuen, J. Diana, P. Zaccone, and A. Cooke, Immune cell crosstalk in type 1 diabetes, Nat. Rev. Immunol, vol.10, pp.501-513, 2010.

J. A. Bluestone, K. Herold, and G. Eisenbarth, Genetics, pathogenesis and clinical interventions in type 1 diabetes, Nature, vol.464, pp.1293-1300, 2010.

L. Wen, Innate immunity and intestinal microbiota in the development of Type 1 diabetes, Nature, vol.455, pp.1109-1113, 2008.

J. G. Markle, Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity, Science, vol.339, pp.1084-1088, 2013.

L. Yurkovetskiy, Gender bias in autoimmunity is influenced by microbiota, Immunity, vol.39, pp.400-412, 2013.

A. D. Kostic, The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes, Cell Host Microbe, vol.17, pp.260-273, 2015.

A. K. Alkanani, Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes, Diabetes, vol.64, pp.3510-3520, 2015.

T. Vatanen, Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans, Cell, vol.165, p.1551, 2016.

C. Alam, Inflammatory tendencies and overproduction of IL-17 in the colon of young NOD mice are counteracted with diet change, Diabetes, vol.59, pp.2237-2246, 2010.

C. Alam, Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice, Diabetologia, vol.54, pp.1398-1406, 2011.

E. Bosi, Increased intestinal permeability precedes clinical onset of type 1 diabetes, Diabetologia, vol.49, pp.2824-2827, 2006.

A. Sapone, Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives, Diabetes, vol.55, pp.1443-1449, 2006.

E. Badami, Defective differentiation of regulatory FoxP3 + T cells by smallintestinal dendritic cells in patients with type 1 diabetes, Diabetes, vol.60, pp.2120-2124, 2011.

E. Treiner, Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1, Nature, vol.422, pp.164-169, 2003.

L. Kjer-nielsen, MR1 presents microbial vitamin B metabolites to MAIT cells, Nature, vol.491, pp.717-723, 2012.

A. J. Corbett, T-cell activation by transitory neo-antigens derived from distinct microbial pathways, Nature, vol.509, pp.361-365, 2014.

M. Dusseaux, Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells, Blood, vol.117, pp.1250-1259, 2011.

K. Franciszkiewicz, MHC class I-related molecule, MR1, and mucosalassociated invariant T cells, Immunol. Rev, vol.272, pp.120-138, 2016.

I. Magalhaes, Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients, J. Clin. Invest, vol.125, pp.1752-1762, 2015.

Z. Illés, M. Shimamura, J. Newcombe, N. Oka, and T. Yamamura, Accumulation of V?7.2-J?33 invariant T cells in human autoimmune inflammatory lesions in the nervous system, Int. Immunol, vol.16, pp.223-230, 2004.

N. Serriari, Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases, Clin. Exp. Immunol, vol.176, pp.266-274, 2014.

Z. Chen, Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals, Mucosal Immunol, 2016.

L. Bourhis and L. , MAIT cells detect and efficiently lyse bacterially-infected epithelial cells, PLoS Pathog, vol.9, p.1003681, 2013.

H. C. Jeffery, Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1, J. Hepatol, vol.64, pp.1118-1127, 2016.

A. Kurioka, MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets, Mucosal Immunol, vol.8, pp.429-440, 2015.

H. Koay, A three-stage intrathymic development pathway for the mucosalassociated invariant T cell lineage, Nat. Immunol, vol.17, pp.1300-1311, 2016.

R. Reantragoon, Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells, J. Exp. Med, vol.210, pp.2305-2320, 2013.

P. Leete, Differential insulitic profiles determine the extent of ?-cell destruction and the age at onset of type 1 diabetes, Diabetes, vol.65, pp.1362-1369, 2016.

J. Komulainen, Clinical, autoimmune, and genetic characteristics of very young children with type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group, Diabetes Care, vol.22, pp.1950-1955, 1999.

P. Ravassard, A genetically engineered human pancreatic ? cell line exhibiting glucose-inducible insulin secretion, J. Clin. Invest, vol.121, pp.3589-3597, 2011.

A. Rahimpour, Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers, J. Exp. Med, vol.212, pp.1095-1108, 2015.

Y. Cui, Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation, J. Clin. Invest, vol.125, pp.4171-4185, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01662502

I. I. Ivanov, The orphan nuclear receptor ROR?t directs the differentiation program of proinflammatory IL-17+ T helper cells, Cell, vol.126, pp.1121-1133, 2006.

J. A. Dudakov, A. M. Hanash, and M. R. Van-den-brink, Interleukin-22: immunobiology and pathology, Annu. Rev. Immunol, vol.33, pp.747-785, 2015.

S. Rutz, X. Wang, and W. Ouyang, The IL-20 subfamily of cytokines--from host defence to tissue homeostasis, Nat. Rev. Immunol, vol.14, pp.783-795, 2014.

F. R. Costa, Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset, J. Exp. Med, vol.213, pp.1223-1239, 2016.

A. Amrani, Progression of autoimmune diabetes driven by avidity maturation of a T-cell population, Nature, vol.406, pp.739-742, 2000.

J. Diana, Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay, J. Exp. Med, vol.208, pp.729-745, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00608142

S. Turley, L. Poirot, M. Hattori, C. Benoist, and D. Mathis, Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model, J. Exp. Med, vol.198, pp.1527-1537, 2003.

K. Fujimoto, A new subset of CD103 + CD8? + dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity, J. Immunol, vol.186, pp.6287-6295, 2011.

V. Cerovic, C. C. Bain, A. M. Mowat, and S. W. Milling, Intestinal macrophages and dendritic cells: what's the difference?, Trends Immunol, vol.35, pp.270-277, 2014.

T. L. Murphy, Transcriptional control of dendritic cell development, Annu. Rev. Immunol, vol.34, pp.93-119, 2016.

Y. Cho, Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus, J. Immunol, vol.193, pp.3891-3901, 2014.

I. Magalhaes, B. Kiaf, and A. Lehuen, iNKT and MAIT cell alterations in diabetes, Front. Immunol, vol.6, p.341, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01182374

A. Toubal and A. Lehuen, Lights on MAIT cells, a new immune player in liver diseases, J. Hepatol, vol.64, pp.1008-1010, 2016.

J. R. Maxwell, Differential Roles for Interleukin-23 and Interleukin-17 in Intestinal Immunoregulation, Immunity, vol.43, pp.739-750, 2015.

J. S. Lee, Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability, Immunity, vol.43, pp.727-738, 2015.

J. L. Mahon, The TrialNet Natural History Study of the Development of Type 1 Diabetes: objectives, design, and initial results, Pediatr. Diabetes, vol.10, pp.97-104, 2009.

, TrialNet -Information for Patients. Available, 2017.

M. Lochner, In vivo equilibrium of proinflammatory IL-17 + and regulatory IL-10 + Foxp3 + ROR?t + T cells, J. Exp. Med, vol.205, pp.1381-1393, 2008.

S. Huang, MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution, Proc. Natl. Acad. Sci. USA, vol.106, pp.8290-8295, 2009.

J. M. Pickard, Rapid fucosylation of intestinal epithelium sustains hostcommensal symbiosis in sickness, Nature, vol.514, pp.638-641, 2014.

, Corresponding author(s): Lehuen cytometry data, confirm that: 1. The axis labels state the marker and fluorochrome used

, Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers)

, Describe the sample preparation. Human cell preparations