A. C. Begg, F. A. Stewart, and C. Vens, Strategies to improve radiotherapy with targeted drugs, Nat Rev Cancer, vol.11, pp.239-53, 2011.

G. Delaney, S. Jacob, C. Featherstone, and M. Barton, The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines, Cancer, vol.104, pp.1129-1166, 2005.

M. Tomblyn, Radioimmunotherapy for B-cell non-hodgkin lymphomas, Cancer Control, vol.19, pp.196-203, 2012.

F. Kraeber-bodéré, P. Salaun, A. Oudoux, D. M. Goldenberg, J. Chatal et al., Pretargeted radioimmunotherapy in rapidly progressing, metastatic, medullary thyroid cancer, Cancer, vol.116, pp.1118-1143, 2010.

M. B. Tomblyn, M. J. Katin, and P. E. Wallner, The new golden era for radioimmunotherapy: not just for lymphomas anymore, Cancer Control, vol.20, pp.60-71, 2013.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-74, 2011.

D. H. Munn and V. Bronte, Immune suppressive mechanisms in the tumor microenvironment, Current Opinion in Immunology, vol.39, pp.1-6, 2016.

R. H. Mole, Whole Body Irradiation-Radiobiology or Medicine?, Br J Radiol, vol.26, pp.234-275, 1953.

C. Mothersill and C. B. Seymour, Radiation-induced bystander effects--implications for cancer, Nat Rev Cancer, vol.4, pp.158-64, 2004.

K. M. Prise and J. M. O'sullivan, Radiation-induced bystander signalling in cancer therapy, Nat Rev Cancer, vol.9, pp.351-60, 2009.

G. Kroemer and L. Zitvogel, Abscopal but desirable: The contribution of immune responses to the efficacy of radiotherapy, Oncoimmunology, vol.1, pp.407-415, 2012.

G. J. Rees, Abscopal regression in lymphoma: a mechanism in common with total body irradiation?, Clin Radiol, vol.32, pp.475-80, 1981.

J. Antoniades, L. W. Brady, and D. A. Lightfoot, Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas, Int. J. Radiat. Oncol. Biol. Phys, vol.2, pp.141-148, 1977.

R. L. Sham, The abscopal effect and chronic lymphocytic leukemia, Am. J. Med, vol.98, pp.307-315, 1995.

A. M. Aalbers, M. J. Aarts, A. Krol, C. Marijnen, and E. Posthuma, The beneficial local and abscopal effect of splenic irradiation in frail patients with chronic lymphocytic leukaemia, Neth J Med, vol.74, pp.122-131, 2016.

E. F. Stamell, J. D. Wolchok, S. Gnjatic, N. Y. Lee, and I. Brownell, The abscopal effect associated with a systemic anti-melanoma immune response, Int. J. Radiat. Oncol. Biol. Phys, vol.85, pp.293-298, 2013.

A. M. Grimaldi, E. Simeone, D. Giannarelli, P. Muto, S. Falivene et al., Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy, Oncoimmunology, vol.3, p.28780, 2014.

S. E. Cotter, G. P. Dunn, K. M. Collins, D. Sahni, K. A. Zukotynski et al., Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: potential role of induced antitumor immunity, Arch Dermatol, vol.147, pp.870-872, 2011.

K. Ohba, K. Omagari, T. Nakamura, N. Ikuno, S. Saeki et al., Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis, Gut, vol.43, pp.575-582, 1998.

H. Ishiyama, B. S. Teh, H. Ren, S. Chiang, A. Tann et al., Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier?, Clin Genitourin Cancer, vol.10, pp.196-204, 2012.

M. Takaya, Y. Niibe, S. Tsunoda, T. Jobo, M. Imai et al., Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma--a case report, Anticancer Res, vol.27, pp.499-503, 2007.

D. W. O'neill, S. Adams, and N. Bhardwaj, Manipulating dendritic cell biology for the active immunotherapy of cancer, Blood, vol.104, pp.2235-2281, 2004.

P. K. Chakravarty, A. Alfieri, E. K. Thomas, V. Beri, K. E. Tanaka et al., Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer, Cancer Research, vol.59, pp.6028-6060, 1999.

S. Demaria, B. Ng, M. L. Devitt, J. S. Babb, N. Kawashima et al., Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated, Int. J. Radiat. Oncol. Biol. Phys, vol.58, pp.862-70, 2004.

K. Shiraishi, Y. Ishiwata, K. Nakagawa, S. Yokochi, C. Taruki et al., Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha, Clin. Cancer Res, vol.14, pp.1159-66, 2008.

S. C. Formenti and S. Demaria, Systemic effects of local radiotherapy, Lancet Oncol, vol.10, pp.718-744, 2009.

E. B. Golden and S. C. Formenti, Is tumor (R)ejection by the immune system the "5th R" of radiobiology?, Oncoimmunology, vol.3, p.28133, 2014.

B. Frey, S. Hehlgans, F. Rödel, and U. S. Gaipl, Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases, Cancer Lett, vol.368, pp.230-237, 2015.

K. Lumniczky and G. Safrany, The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences, Cancer Lett, vol.356, pp.114-139, 2015.

N. Hekim, Z. Cetin, Z. Nikitaki, A. Cort, and E. I. Saygili, Radiation triggering immune response and inflammation, Cancer Lett, vol.368, pp.156-63, 2015.

V. Ifeadi and C. Garnett-benson, Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways, PLoS ONE, vol.7, p.31762, 2012.

J. Kim, Y. Son, S. Park, J. Bae, J. S. Chung et al., Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation, Exp. Mol. Med, vol.38, pp.474-84, 2006.

J. Vondrácek, M. A. Sheard, P. Krejcí, K. Minksová, J. Hofmanová et al., Modulation of death receptor-mediated apoptosis in differentiating human myeloid leukemia HL-60 cells, J. Leukoc. Biol, vol.69, pp.794-802, 2001.

M. Chakraborty, S. I. Abrams, K. Camphausen, K. Liu, T. Scott et al., Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy, J. Immunol, vol.170, pp.6338-6385, 2003.

C. T. Garnett, C. Palena, M. Chakraborty, M. Chakarborty, K. Tsang et al., Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes, Cancer Research, vol.64, pp.7985-94, 2004.

E. A. Reits, J. W. Hodge, C. A. Herberts, T. A. Groothuis, M. Chakraborty et al., Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy, J. Exp. Med, vol.203, pp.1259-71, 2006.

R. Vereecque, G. Buffenoir, R. Gonzalez, N. Cambier, D. Hetuin et al., gamma-ray irradiation induces B7.1 expression in myeloid leukaemic cells, Br. J. Haematol, vol.108, pp.825-856, 2000.

M. Chakraborty, E. K. Wansley, J. A. Carrasquillo, S. Yu, C. H. Paik et al., The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing, Clin. Cancer Res, vol.14, pp.4241-4250, 2008.

M. Chakraborty, A. Gelbard, J. A. Carrasquillo, S. Yu, M. Mamede et al., Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects, Cancer Immunol Immunother, vol.57, pp.1173-83, 2008.

A. Seo, F. Ishikawa, H. Nakano, H. Nakazaki, K. Kobayashi et al., Enhancement of B7-1 (CD80) expression on B-lymphoma cells by irradiation, Immunology, vol.96, pp.642-650, 1999.

Z. Chen, T. Moyana, A. Saxena, R. Warrington, Z. Jia et al., Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells, Int. J. Cancer, vol.93, pp.539-587, 2001.

Y. Kotera, K. Shimizu, and J. J. Mulé, Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization, Cancer Research, vol.61, pp.8105-8114, 2001.

M. Zhang, Z. Yao, H. Patel, K. Garmestani, Z. Zhang et al., Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.8444-8452, 2007.

Y. Ma, O. Kepp, F. Ghiringhelli, L. Apetoh, L. Aymeric et al., Chemotherapy and radiotherapy: cryptic anticancer vaccines, Semin. Immunol, vol.22, pp.113-137, 2010.

L. Zitvogel, O. Kepp, and G. Kroemer, Decoding cell death signals in inflammation and immunity, Cell, vol.140, pp.798-804, 2010.

M. Obeid, A. Tesniere, F. Ghiringhelli, G. M. Fimia, L. Apetoh et al., Calreticulin exposure dictates the immunogenicity of cancer cell death, Nat. Med, vol.13, pp.54-61, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00451702

T. Panaretakis, O. Kepp, U. Brockmeier, A. Tesniere, A. Bjorklund et al., Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death, EMBO J, vol.28, pp.578-90, 2009.

T. Panaretakis, N. Joza, N. Modjtahedi, A. Tesniere, I. Vitale et al., The cotranslocation of ERp57 and calreticulin determines the immunogenicity of cell death, Cell Death Differ, vol.15, pp.1499-509, 2008.

A. Q. Sukkurwala, I. Martins, Y. Wang, F. Schlemmer, C. Ruckenstuhl et al., Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8, Cell Death Differ, vol.21, pp.59-68, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02109979

T. Yamazaki, D. Hannani, V. Poirier-colame, S. Ladoire, C. Locher et al., Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists, Cell Death Differ, vol.21, pp.69-78, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02047406

P. Scaffidi, T. Misteli, and M. E. Bianchi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation, Nature, vol.418, pp.191-196, 2002.

D. Tang, M. T. Loze, H. J. Zeh, and R. Kang, The redox protein HMGB1 regulates cell death and survival in cancer treatment, Autophagy, vol.6, pp.1181-1184, 2010.

L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz et al., Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nat. Med, vol.13, pp.1050-1059, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00316924

J. Gorin, J. Ménager, S. Gouard, C. Maurel, Y. Guilloux et al., Antitumor immunity induced after ? irradiation, Neoplasia, vol.16, pp.319-347, 2014.

I. Martins, A. Tesniere, O. Kepp, M. Michaud, F. Schlemmer et al., Chemotherapy induces ATP release from tumor cells. cc, vol.8, pp.3723-3731, 2009.

M. R. Elliott, F. B. Chekeni, P. C. Trampont, E. R. Lazarowski, A. Kadl et al., Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.461, pp.282-288, 2009.

F. Ghiringhelli, L. Apetoh, A. Tesniere, L. Aymeric, Y. Ma et al., Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors, Nat. Med, vol.15, pp.1170-1178, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419823

L. Aymeric, L. Apetoh, F. Ghiringhelli, A. Tesniere, I. Martins et al., Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity, Cancer Research, vol.70, pp.855-863, 2010.

I. Martins, Y. Wang, M. Michaud, Y. Ma, A. Q. Sukkurwala et al., Molecular mechanisms of ATP secretion during immunogenic cell death, Cell Death Differ, vol.21, pp.79-91, 2014.

F. B. Chekeni, M. R. Elliott, J. K. Sandilos, S. F. Walk, J. M. Kinchen et al., Pannexin 1 channels mediate "find-me" signal release and membrane permeability during apoptosis, Nature, vol.467, pp.863-870, 2010.

M. Michaud, I. Martins, A. Q. Sukkurwala, S. Adjemian, Y. Ma et al., Autophagydependent anticancer immune responses induced by chemotherapeutic agents in mice, Science, vol.334, pp.1573-1580, 2011.

J. Gorin, S. Gouard, J. Ménager, A. Morgenstern, F. Bruchertseifer et al., Alpha Particles Induce Autophagy in Multiple Myeloma Cells, Front Med (Lausanne), vol.2, p.74, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01817484

M. Rieber and M. S. Rieber, Sensitization to radiation-induced DNA damage accelerates loss of bcl-2 and increases apoptosis and autophagy, Cancer Biol. Ther, vol.7, pp.1561-1567, 2008.

H. Rodriguez-rocha, A. Garcia-garcia, M. I. Panayiotidis, and R. Franco, DNA damage and autophagy, Mutat. Res, vol.711, pp.158-66, 2011.

P. Schildkopf, B. Frey, O. J. Ott, Y. Rubner, G. Multhoff et al., Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages, Radiother Oncol, vol.101, pp.109-124, 2011.

Y. Rubner, C. Muth, A. Strnad, A. Derer, R. Sieber et al., Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines, Radiat Oncol, vol.9, p.89, 2014.

G. Multhoff, A. G. Pockley, T. E. Schmid, and D. Schilling, The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation, Cancer Lett, vol.368, pp.179-84, 2015.

S. C. Formenti and S. Demaria, Combining radiotherapy and cancer immunotherapy: a paradigm shift, J. Natl. Cancer Inst, vol.105, pp.256-65, 2013.

A. A. Lugade, E. W. Sorensen, S. A. Gerber, J. P. Moran, J. G. Frelinger et al., Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity, J. Immunol, vol.180, pp.3132-3141, 2008.

S. Matsumura and S. Demaria, Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation, Radiat. Res, vol.173, pp.418-443, 2010.

S. Matsumura, B. Wang, N. Kawashima, S. Braunstein, M. Badura et al., Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells, The Journal of Immunology, vol.181, pp.3099-107, 2008.

H. Ishihara, K. Tsuneoka, A. B. Dimchev, and M. Shikita, Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation, Radiat. Res, vol.133, pp.321-327, 1993.

B. C. Burnette, H. Liang, Y. Lee, L. Chlewicki, N. N. Khodarev et al., The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity, Cancer Research, vol.71, pp.2488-96, 2011.

B. Burnette and R. R. Weichselbaum, Radiation as an immune modulator, Semin Radiat Oncol, vol.23, pp.273-80, 2013.

H. Z. Ozsoy, N. Sivasubramanian, E. D. Wieder, S. Pedersen, and D. L. Mann, Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling, J. Biol. Chem, vol.283, pp.23419-23447, 2008.

R. Ganss, E. Ryschich, E. Klar, B. Arnold, and G. J. Hämmerling, Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication, Cancer Research, vol.62, pp.1462-70, 2002.

A. A. Lugade, J. P. Moran, S. A. Gerber, R. C. Rose, J. G. Frelinger et al., Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor, J. Immunol, vol.174, pp.7516-7539, 2005.

K. Reynders, T. M. Illidge, S. Siva, J. Y. Chang, D. Ruysscher et al., The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant, Cancer Treat. Rev, vol.41, pp.503-513, 2015.

L. A. Everse, I. B. Renes, I. M. Jürgenliemk-schulz, D. H. Rutgers, M. R. Bernsen et al., Local low-dose interleukin-2 induces systemic immunity when combined with radiotherapy of cancer. A pre-clinical study, Int. J. Cancer, vol.72, pp.1003-1010, 1997.

I. M. Jürgenliemk-schulz, I. B. Renes, D. H. Rutgers, L. A. Everse, M. R. Bernsen et al.,

, Anti-tumor effects of local irradiation in combination with peritumoral administration of low doses of recombinant interleukin-2 (rIL-2), Radiat Oncol Investig, vol.5, pp.54-61, 1997.

R. A. Maas, H. F. Dullens, D. Jong, and W. H. , Otter Den W. Immunotherapy of mice with a large burden of disseminated lymphoma with low-dose interleukin 2, Cancer Research, vol.49, pp.7037-7077, 1989.

A. Masztalerz, L. A. Everse, and W. D. Otter, Presence of cytotoxic B220+CD3+CD4-CD8-cells correlates with the therapeutic efficacy of lymphoma treatment with IL-2 and/or IL-12, J. Immunother, vol.27, pp.107-122, 2004.

X. Poiré, J. Kline, D. Grinblatt, T. Zimmerman, K. Conner et al., Phase II study of immunomodulation with granulocyte-macrophage colony-stimulating factor, interleukin-2, and rituximab following autologous stem cell transplant in patients with relapsed or refractory lymphomas, Leuk. Lymphoma, vol.51, pp.1241-50, 2010.

A. Nagler, R. Berger, A. Ackerstein, J. A. Czyz, J. L. Diez-martin et al., A randomized controlled multicenter study comparing recombinant interleukin 2 (rIL-2) in conjunction with recombinant interferon alpha (IFN-alpha) versus no immunotherapy for patients with malignant lymphoma postautologous stem cell transplantation, J. Immunother, vol.33, pp.326-359, 2010.

L. G. Lum, A. Thakur, C. Pray, N. Kouttab, M. Abedi et al., Multiple infusions of CD20-targeted T cells and low-dose IL-2 after SCT for high-risk non-Hodgkin's lymphoma: a pilot study, Bone Marrow Transplant, vol.49, pp.73-82, 2014.

J. Honeychurch, M. J. Glennie, P. Johnson, and T. M. Illidge, Anti-CD40 monoclonal antibody therapy in combination with irradiation results in a CD8 T-cell-dependent immunity to B-cell lymphoma, Blood, vol.102, pp.1449-57, 2003.

A. Khong, D. J. Nelson, A. K. Nowak, R. A. Lake, and B. Robinson, The use of agonistic anti-CD40 therapy in treatments for cancer, Int. Rev. Immunol, vol.31, pp.246-66, 2012.

Z. Zhou, Q. Shi, J. Wang, Y. Chen, Y. Zhuang et al., Sensitization of multiple myeloma and B lymphoma lines to dexamethasone and gamma-radiation-induced apoptosis by CD40 activation, Apoptosis, vol.10, pp.123-157, 2005.

S. B. Hassan, J. F. Sørensen, B. N. Olsen, and A. E. Pedersen, Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials, Immunopharmacol Immunotoxicol, vol.36, pp.96-104, 2014.

S. De-vos, A. Forero-torres, S. M. Ansell, B. Kahl, B. D. Cheson et al., A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors, J Hematol Oncol, vol.7, p.44, 2014.

S. J. Dovedi, M. Melis, R. W. Wilkinson, A. L. Adlard, I. J. Stratford et al., Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma, Blood, vol.121, pp.251-260, 2013.

S. Kobold, G. Wiedemann, S. Rothenfußer, and S. Endres, Modes of action of TLR7 agonists in cancer therapy, Immunotherapy, vol.6, pp.1085-95, 2014.

J. Zhu, S. He, J. Du, Z. Wang, W. Li et al., Local administration of a novel Toll-like receptor 7 agonist in combination with doxorubicin induces durable tumouricidal effects in a murine model of T cell lymphoma, J Hematol Oncol, vol.8, p.21, 2015.

M. Wysocka, S. Newton, B. M. Benoit, C. Introcaso, A. S. Hancock et al., Synthetic imidazoquinolines potently and broadly activate the cellular immune response of patients with cutaneous T-cell lymphoma: synergy with interferon-gamma enhances production of interleukin-12, Clin Lymphoma Myeloma Leuk, vol.7, pp.524-558, 2007.

M. Wysocka, N. Dawany, B. Benoit, A. V. Kossenkov, A. B. Troxel et al., Synergistic enhancement of cellular immune responses by the novel Toll receptor 7/8 agonist 3M-007 and interferon-?: implications for therapy of cutaneous T-cell lymphoma, Leuk. Lymphoma, vol.52, pp.1970-1979, 2011.

B. J. Weigel, S. Cooley, T. Defor, D. J. Weisdorf, A. Panoskaltsis-mortari et al., Prolonged subcutaneous administration of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced hematologic malignancies, Am. J. Hematol, vol.87, pp.953-959, 2012.

M. Z. Dewan, C. Vanpouille-box, N. Kawashima, S. Dinapoli, J. S. Babb et al., Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer, Clin. Cancer Res, vol.18, pp.6668-78, 2012.

A. L. Adlard, S. J. Dovedi, B. A. Telfer, E. Koga-yamakawa, C. Pollard et al., A novel systemically administered Toll-like receptor 7 agonist potentiates the effect of ionizing radiation in murine solid tumor models, Int. J. Cancer, vol.135, pp.820-829, 2014.

J. Ménager, J. Gorin, C. Maurel, L. Drujont, S. Gouard et al., Combining ?-Radioimmunotherapy and Adoptive T Cell Therapy to Potentiate Tumor Destruction, PLoS ONE, vol.10, p.130249, 2015.

Y. Abuodeh, P. Venkat, and S. Kim, Systematic review of case reports on the abscopal effect, Curr Probl Cancer, vol.40, pp.25-37, 2016.

S. N. Seyedin, J. E. Schoenhals, D. A. Lee, M. A. Cortez, X. Wang et al., Strategies for combining immunotherapy with radiation for anticancer therapy, Immunotherapy, vol.7, pp.967-80, 2015.

M. Crittenden, H. Kohrt, R. Levy, J. Jones, K. Camphausen et al., Current Clinical Trials Testing Combinations of Immunotherapy and Radiation, Semin Radiat Oncol, vol.25, pp.54-64, 2015.

C. A. Barker and M. A. Postow, Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes, Int. J. Radiat. Oncol. Biol. Phys, vol.88, pp.986-97, 2014.

J. D. Brody, W. Z. Ai, D. K. Czerwinski, J. A. Torchia, M. Levy et al., In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study, J. Clin. Oncol, vol.28, pp.4324-4356, 2010.

T. E. Witzig, G. A. Wiseman, M. J. Maurer, T. M. Habermann, I. Micallef et al., A phase I trial of immunostimulatory CpG 7909 oligodeoxynucleotide and 90 yttrium ibritumomab tiuxetan radioimmunotherapy for relapsed B-cell non-Hodgkin lymphoma, Am. J. Hematol, vol.88, pp.589-93, 2013.

A. Abulayha, A. Bredan, E. El, H. Daniels, and I. , Rituximab: modes of action, remaining dispute and future perspective, Future Oncol, vol.10, pp.2481-92, 2014.

L. M. Weiner, M. V. Dhodapkar, and S. Ferrone, Monoclonal antibodies for cancer immunotherapy, Lancet, vol.373, pp.1033-1073, 2009.

F. Buchegger, S. M. Larson, J. Mach, Y. Chalandon, P. Dietrich et al., Radioimmunotherapy combined with maintenance anti-CD20 antibody may trigger longterm protective T cell immunity in follicular lymphoma patients, Clin. Dev. Immunol, p.875343, 2013.

S. A. Jacobs, S. H. Swerdlow, J. Kant, K. A. Foon, R. Jankowitz et al., Phase II trial of short-course CHOP-R followed by 90Y-ibritumomab tiuxetan and extended rituximab in previously untreated follicular lymphoma, Clin. Cancer Res, vol.14, pp.7088-94, 2008.

F. Pisani, R. Sciuto, M. L. Dessanti, D. Giannarelli, R. Kayal et al., Long term efficacy and safety of Fludarabine, Cyclophosphamide and Rituximab regimen followed by (90)Yibritumomab tiuxetan consolidation for the treatment of relapsed grades 1 and 2 follicular lymphoma, Exp Hematol Oncol, vol.4, p.17, 2015.

T. E. Witzig, F. Hong, I. N. Micallef, R. D. Gascoyne, A. Dogan et al., A phase II trial of RCHOP followed by radioimmunotherapy for early stage (stages I/II) diffuse large B-cell non-Hodgkin lymphoma: ECOG3402, Br. J. Haematol, vol.170, pp.679-86, 2015.

E. B. Golden, A. Chhabra, A. Chachoua, S. Adams, M. Donach et al., Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial, Lancet Oncol, vol.16, pp.795-803, 2015.

M. L. Davila and M. Sadelain, Biology and clinical application of CAR T cells for B cell malignancies, Int. J. Hematol, vol.104, pp.6-17, 2016.

E. C. Morris and H. J. Stauss, Optimizing T-cell receptor gene therapy for hematologic malignancies, Blood, vol.127, pp.3305-3316, 2016.

J. L. Adams, J. Smothers, R. Srinivasan, and A. Hoos, Big opportunities for small molecules in immuno-oncology, Nat Rev Drug Discov, vol.14, pp.603-625, 2015.