N. Zheng, B. A. Schulman, L. Song, J. J. Miller, P. D. Jeffrey et al.,

, Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex, Nature, vol.416, issue.6882, pp.703-712, 2002.

E. T. Kipreos and M. Pagano, The F-box protein family, Genome Biol, vol.1, issue.5, p.3002, 2000.

E. T. Kipreos, L. E. Lander, J. P. Wing, W. W. He, and E. M. Hedgecock, cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family, Cell, vol.85, issue.6, pp.829-868, 1996.

S. A. Lyapina, C. C. Correll, E. T. Kipreos, and R. J. Deshaies, Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box protein

, Proc Natl Acad Sci U S A, vol.95, issue.13, pp.7451-7457, 1998.

J. J. Michel and Y. Xiong, Human CUL-1, but not other cullin family members, selectively

M. Furukawa, Y. Zhang, J. Mccarville, T. Ohta, and Y. Xiong, The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1, Mol Cell Biol, vol.20, issue.21, pp.8185-97, 2000.

V. N. Podust, J. E. Brownell, T. B. Gladysheva, R. S. Luo, C. Wang et al., A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination, Proc Natl Acad Sci, vol.97, issue.9, pp.4579-84, 2000.

M. A. Read, J. E. Brownell, T. B. Gladysheva, M. Hottelet, L. A. Parent et al.,

, Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha, Mol Cell Biol, vol.20, issue.7, pp.2326-2359, 2000.

T. Kawakami, T. Chiba, T. Suzuki, K. Iwai, K. Yamanaka et al.,

, E2-ubiquitin to SCF E3 ligase, Embo J, vol.20, issue.15, pp.4003-4015, 2001.

W. D. Travis, T. V. Colby, B. Corrin, Y. Shimosato, and E. Brambilla,

, Histological Classification of Tumours: Histological Typing of Lung and Pleural Tumours

E. Springer, , 1999.

W. D. Travis, W. Rush, D. B. Flieder, R. Falk, M. V. Fleming et al., Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid, Am J Surg Pathol, vol.22, issue.8, pp.934-978, 1998.

M. H. Jones, C. Virtanen, D. Honjoh, T. Miyoshi, Y. Satoh et al., Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles, Lancet, vol.363, issue.9411, pp.775-81, 2004.

S. Gazzeri, D. Valle, V. Chaussade, L. Brambilla, C. Larsen et al., The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer, Cancer Res, vol.58, issue.17, pp.3926-3957, 1998.

B. Eymin, S. Gazzeri, C. Brambilla, and E. Brambilla, Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma, Oncogene, vol.20, issue.14, pp.1678-87, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-02337591

I. Viard-leveugle, S. Veyrenc, L. E. French, C. Brambilla, and E. Brambilla,

, Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma, J Pathol, vol.201, issue.2, pp.268-77, 2003.

C. Salon, G. Merdzhanova, C. Brambilla, E. Brambilla, S. Gazzeri et al., E2F-1, Skp2 and cyclin E oncoproteins are upregulated and directly correlated in high-grade neuroendocrine lung tumors, Oncogene, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00173067

K. Wu, A. Chen, and Z. Q. Pan, Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization, J Biol Chem, vol.275, issue.41, pp.32317-32341, 2000.

J. Liu, M. Furukawa, T. Matsumoto, and Y. Xiong, NEDD8 modification of CUL1

, dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases, vol.10, pp.1511-1519, 2002.

S. J. Goldenberg, T. C. Cascio, S. D. Shumway, K. C. Garbutt, J. Liu et al., Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases, Cell, vol.119, issue.4, pp.517-545, 2004.

K. W. Min, M. J. Kwon, H. S. Park, Y. Park, S. K. Yoon et al., CAND1 enhances deneddylation of CUL1 by COP9 signalosome, Biochem Biophys Res Commun, vol.334, issue.3, pp.867-74, 2005.

C. Wirbelauer, H. Sutterluty, M. Blondel, M. Gstaiger, M. Peter et al.,

. F-box, protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts

, Embo J, vol.19, issue.20, pp.5362-75, 2000.

K. Nakayama, H. Nagahama, Y. A. Minamishima, and M. Matsumoto,

K. , Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication, Embo J, vol.19, issue.9, pp.2069-81, 2000.

K. I. Nakayama and K. Nakayama, Ubiquitin ligases: cell-cycle control and cancer, Nat Rev Cancer, vol.6, issue.5, pp.369-81, 2006.

R. M. Feldman, C. C. Correll, K. B. Kaplan, and R. J. Deshaies, A complex of Cdc4p, vol.1

, Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p, vol.91, pp.221-251, 1997.

E. E. Patton, A. R. Willems, D. Sa, L. Kuras, D. Thomas et al., Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast, Genes Dev, vol.12, issue.5, pp.692-705, 1998.

Y. Wang, S. Penfold, X. Tang, N. Hattori, P. Riley et al., , p.1

, gene in mice causes arrest in early embryogenesis and accumulation of cyclin E, Curr Biol, vol.9, issue.20, pp.1191-1195, 1999.

M. J. Dealy, K. V. Nguyen, J. Lo, M. Gstaiger, W. Krek et al., Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E, Nat Genet, vol.23, issue.2, pp.245-253, 1999.

R. Piva, J. Liu, R. Chiarle, A. Podda, M. Pagano et al.,

, Skp1 function leads to genetic instability and neoplastic transformation, Mol Cell Biol, vol.22, issue.23, pp.8375-87, 2002.

J. T. Wu, H. C. Lin, Y. C. Hu, and C. T. Chien, Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation, Nat Cell Biol, vol.7, issue.10, pp.1014-1034, 2005.

M. Ohh, W. Y. Kim, J. J. Moslehi, Y. Chen, V. Chau et al., An intact, p.8

S. Denti, F. Sanchez, M. E. Rogge, L. Bianchi, and E. , The COP9 signalosome regulates Skp2 levels and proliferation of human cells, J Biol Chem, 2006.

G. Bornstein, D. Ganoth, and A. Hershko, Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate, Proc Natl Acad Sci, vol.103, issue.31, pp.11515-11535, 2006.

J. D. Singer, M. Gurian-west, B. Clurman, and J. M. Roberts, Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells, Genes Dev, vol.13, issue.18, pp.2375-87, 1999.

W. Zhang and D. M. Koepp, Legends Figure 1. (A) Cul-1 immunostaining of normal lung parenchyma and lung cancer tissues on frozen sections using an anti-Cul-1 rabbit polyclonal antibody (Neomarkers). Moderate staining in (a) bronchiolar or (b) alveolar normal epithelium, p.1

, immunostaining in a typical carcinoid. (d)

, Moderate and (f) strong Cul-1 immunostaining in two squamous cell carcinoma. (B) Cul-1 scores in carcinoids, HGNE lung carcinoma and NSCLC. (C) Comparison of Cul-1 scores between atypical carcinoids and LCNEC. Statistical analyses were performed using a Mann-Whitney U-test, NS: not significant

, Cul-1 expression was analyzed by immunoblotting in normal (N) and tumoral (T) lung samples. Cul-1 expression was upregulated (T3, T8, T11-12, T16) or downregulated (T4-7, T13) according to the samples. T14-15 expressed similar levels of Cul-1 as normal lung. Arrows in the upper blot represent higher migrating forms of

, Actin was used as a loading control. (B) Cul-1 expression and neddylation in 7 lung carcinoids were analyzed as described in (A)

, A) CAND1 immunostaining of normal lung parenchyma and lung cancer tissues on paraffin-embedded sections using an anti-CAND1 mouse monoclonal antibody (5D7, Abnova). (a) Moderate staining in bronchiolar normal epithelium. (b) Strong CAND-1 assessed). (B) Comparison of CAND1 scores between carcinoids