P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, issue.6801, pp.249-57, 2000.

N. Ferrara, R. D. Mass, C. Campa, and R. Kim, Targeting VEGF-A to treat cancer and agerelated macular degeneration, Annu Rev Med, vol.58, pp.491-504, 2007.

R. Roskoski, Vascular endothelial growth factor (VEGF) signaling in tumor progression, Crit Rev Oncol Hematol, vol.62, issue.3, pp.179-213, 2007.

N. Ferrara, H. P. Gerber, and J. Lecouter, The biology of VEGF and its receptors, Nat Med

H. L. Goel and A. M. Mercurio, VEGF targets the tumour cell, Nat Rev Cancer, vol.13, issue.12, pp.871-82

S. Lantuejoul, B. Constantin, H. Drabkin, C. Brambilla, J. Roche et al.,

, Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines, J Pathol, vol.200, issue.3, pp.336-383, 2003.

R. E. Bachelder, A. Crago, J. Chung, M. A. Wendt, L. M. Shaw et al., Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells, Cancer Res, vol.61, issue.15, pp.5736-5776, 2001.

R. E. Bachelder, M. A. Wendt, and A. M. Mercurio, Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4, Cancer Res, vol.62, issue.24, pp.7203-7209, 2002.

H. L. Goel, C. Chang, B. Pursell, I. Leav, S. Lyle et al., VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer, Cancer Discov, vol.2, issue.10, pp.906-927

B. M. Lichtenberger, P. K. Tan, H. Niederleithner, N. Ferrara, P. Petzelbauer et al.,

, Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development, Cell, vol.140, issue.2, pp.268-79

K. V. Lu, J. P. Chang, C. A. Parachoniak, M. M. Pandika, M. K. Aghi et al.,

, VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex, Cancer Cell, vol.22, issue.1, pp.21-35

M. J. Pajares, J. Agorreta, M. Larrayoz, A. Vesin, T. Ezponda et al., Expression of tumor-derived vascular endothelial growth factor and its receptors is associated with outcome in early squamous cell carcinoma of the lung, J Clin Oncol, vol.30, issue.10, pp.1129-1165

C. J. Robinson and S. E. Stringer, The splice variants of vascular endothelial growth factor (VEGF) and their receptors, J Cell Sci, vol.114, pp.853-65, 2001.

D. O. Bates, T. G. Cui, J. M. Doughty, M. Winkler, M. Sugiono et al.,

, VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is downregulated in renal cell carcinoma, Cancer Res, vol.62, issue.14, pp.4123-4154, 2002.

M. R. Ladomery, S. J. Harper, and D. O. Bates, Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm, Cancer Lett, vol.249, issue.2, pp.133-175, 2007.

S. Harris, M. Craze, J. Newton, M. Fisher, D. T. Shima et al., Do antiangiogenic VEGF (VEGFxxxb) isoforms exist? A cautionary tale, PLoS One, vol.7, issue.5

. Vegf-;-b and . Vegf, )b are weakly angiogenic isoforms of VEGF-A. Mol Cancer, vol.9, p.320

H. Xin, C. Zhong, E. Nudleman, and N. Ferrara, Evidence for Pro-angiogenic Functions of VEGF-Ax, Cell, vol.167, issue.1, pp.275-84, 2016.

J. Woolard, W. Y. Wang, H. S. Bevan, Y. Qiu, L. Morbidelli et al.,

, VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of 26

, Cancer Res, vol.64, issue.21, pp.7822-7857, 2004.

R. O. Pritchard-jones, D. B. Dunn, Y. Qiu, A. H. Varey, A. Orlando et al.,

, Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma, Br J Cancer, vol.97, issue.2, pp.223-253, 2007.

H. Kawamura, X. Li, S. J. Harper, D. O. Bates, and L. Claesson-welsh, Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity, Cancer Res, vol.68, issue.12, pp.4683-92, 2008.

C. Suarez, S. Pieren, M. Cariolato, L. Arn, S. Hoffmann et al.,

, VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2, Cell Mol Life Sci, vol.63, issue.17, pp.2067-77, 2006.

D. Lambrechts, H. J. Lenz, S. De-haas, P. Carmeliet, and S. J. Scherer, Markers of response for the antiangiogenic agent bevacizumab, J Clin Oncol, vol.31, issue.9, pp.1219-1249

H. S. Rugo, Inhibiting angiogenesis in breast cancer: the beginning of the end or the end of the beginning?, J Clin Oncol, vol.30, issue.9, pp.898-901

D. O. Bates, P. J. Catalano, K. E. Symonds, A. H. Varey, P. Ramani et al.,

, Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab, Clin Cancer Res, vol.18, issue.22, pp.6384-91

D. G. Nowak, J. Woolard, E. M. Amin, O. Konopatskaya, M. A. Saleem et al., Expression of pro-and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors, J Cell Sci, vol.121, pp.3487-95, 2008.

T. T. Chen, A. Luque, S. Lee, S. M. Anderson, T. Segura et al., Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells, J Cell Biol, vol.188, issue.4, pp.595-609

, Cell number was estimated following trypan blue staining. Values are mean ± SD of 3 independent experiments. (Non-parametric Mann-Whitney test, *** p<0.001). (f)

, Representative immunostaining of P-VEGFR1(Tyr1213) or VEGFR1 proteins in H358

, xenografts having received either mismatch or VEGF 165 b siRNA as indicated

, for 72 hours with rhVEGF 165 b (0.1 ng/ml) as indicated. VEGFR1 or VEGFR2 mRNA levels were quantified by RT-QPCR in each condition. GAPDH was used as an internal control. (h) VEGFR1 (white bars) or VEGFR2 (hatched bars) mRNA levels were quantified by RT-QPCR in control cells (pcDNA3.1 transfected) or H358 or H1299 clones overexpressing VEGF 165 b. GAPDH was used as an internal control. (i) Mean levels ± standard deviation of VEGF 165 b immunohistochemical scores according to the expression of VEGFR1 (high and low) in NSCLC patients, H358 or H1299 cells were treated (rhVEGF 165 b, hatched bars) or not (NT, white bars)

*. , , vol.001

, VEGF 165 b promotes invasion. (a) Microscopic visualization of morphological differences between H358/H1299 control and VEGF 165 b-overexpressing cells

, Immunoblots for Epithelial to Mesenchymal Transition (EMT) markers in H358 cells treated or not with 0.1 ng/ml rhVEGF 165 b for 72 hours (b) or in control (Co), H358 and H1299-VEGF 165 b clones (c)