A. Fire, Potent and speci?c genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, pp.806-811, 1998.

Q. Lin, J. Chen, Z. Zhang, and G. Zheng, Lipid-based nanoparticles in the systemic delivery of siRNA, Nanomedicine, issue.9, pp.105-120, 2014.

G. Tiram, A. Scomparin, P. Ofek, and R. Satchi-fainaro, Interfering cancer with polymeric siRNA nanomedicines, J. Biomed. Nanotechnol, vol.10, pp.50-66, 2014.

Z. Du, M. M. Munye, A. D. Tagalakis, M. D. Manunta, and S. L. Hart, The Role of the Helper Lipid on the DNA Transfection Efficiency of Lipopolyplex Formulations, Sci. Rep, p.7107, 2014.

D. C. Litzinger and L. Huang, Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications, Biochim. Biophys. Acta, vol.1113, pp.201-227, 1992.

P. Resnier, T. Montier, V. Mathieu, J. Benoit, and C. Passirani, A review of the current status of siRNA nanomedicines in the treatment of cancer, Biomaterials, vol.34, pp.6429-6443, 2013.

S. David, B. Pitard, J. Benoît, and C. Passirani, Non-viral nanosystems for systemic siRNA delivery, Pharmacol. Res, vol.62, pp.100-114, 2010.

M. Morille, C. Passirani, A. Vonarbourg, A. Clavreul, and J. Benoit, Progress in developing cationic vectors for non-viral systemic gene therapy against cancer, Biomaterials, vol.29, pp.3477-3496, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00353462

P. Resnier, Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma, Biotechnol. J, vol.9, pp.1389-1401, 2014.

S. David, siRNA LNCs-a novel platform of lipid nanocapsules for systemic siRNA administration, Eur. J. Pharm. Biopharm, vol.81, pp.448-452, 2012.

P. Resnier, EGFR siRNA lipid nanocapsules efficiently transfect glioma cells in vitro, Int. J. Pharm, vol.454, pp.748-755, 2013.

M. Morille, Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting, Biomaterials, vol.31, pp.321-329, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00491402

S. David, In vivo imaging of DNA lipid nanocapsules a?er systemic administration in a melanoma mouse model, Int. J. Pharm, vol.423, pp.108-115, 2012.

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, vol.65, pp.271-284, 2000.

C. Laine, Folate-equipped pegylated archaeal lipid derivatives: synthesis and transfection properties, Chemistry, vol.14, pp.8330-8340, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00403237

T. Benvegnu, L. Lemiegre, and S. Cammas-marion, New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery, Recent Pat, Drug Deliv. Formulation, vol.3, pp.206-220, 2009.

J. Barbeau, S. Cammas-marion, P. Auvray, and T. Benvegnu, Preparation and Characterization of Stealth Archaeosomes Based on a Synthetic PEGylated Archaeal Tetraether Lipid, J. Drug Delivery, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00753450

A. Jhaveri, P. Deshpande, and V. Torchilin, Stimuli-sensitive nanopreparations for combination cancer therapy, J. Control. Release, vol.190, pp.352-370, 2014.

V. Kalichuk, The archaeal "7 kDa DNA-binding" proteins: extended characterization of an old gi?ed family, Sci. Rep, vol.6, p.37274, 2016.

G. Behar, Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins, Protein Eng. Des. Sel, vol.26, pp.267-275, 2013.

A. Correa, Potent and speci?c inhibition of glycosidases by small arti?cial binding proteins (affitins), PLoS One, vol.9, p.97438, 2014.

B. Mouratou, Remodeling a DNA-binding protein as a speci?c in vivo inhibitor of bacterial secretin PulD, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.17983-17988, 2007.

G. Behar, S. Pacheco, M. Maillasson, B. Mouratou, and F. Pecorari, Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability, J. Biotechnol, pp.123-129, 2014.

G. Behar, A. Renodon-corniere, B. Mouratou, and F. Pecorari, Affitins as robust tailored reagents for affinity chromatography puri?cation of antibodies and nonimmunoglobulin proteins, J. Chromatogr. A, pp.44-51, 1441.

C. S. Fernandes, Affitins for protein puri?cation by affinity magnetic ?shing, J. Chromatogr. A, vol.1457, pp.50-58, 2016.

V. Kalichuk, A novel, smaller scaffold for Affitins: Showcase with binders speci?c for EpCAM, Biotechnol. Bioeng, vol.115, pp.290-299, 2018.

S. Pacheco, G. Behar, M. Maillasson, B. Mouratou, and F. Pecorari, Affinity transfer to the archaeal extremophilic Sac7d protein by insertion of a CDR, Protein Eng. Des. Sel, vol.27, pp.431-438, 2014.

G. Behar, Whole-bacterium ribosome display selection for isolation of highly speci?c anti-Staphyloccocus aureus Affitins for detection-and capture-based biomedical applications, Biotechnol. Bioeng, vol.116, pp.1844-1855, 2019.

G. Grazia, I. Penna, V. Perotti, A. Anichini, and E. Tassi, Towards combinatorial targeted therapy in melanoma: from pre-clinical evidence to clinical application (review), Int. J. Oncol, vol.45, pp.929-949, 2014.

W. J. Kim, Anti-angiogenic inhibition of tumor growth by systemic delivery of, J. Control. Release, vol.114, pp.381-388, 2006.

E. Bourseau-guilmain, Development and characterization of immuno-nanocarriers targeting the cancer stem cell marker AC133, Int. J. Pharm, vol.423, pp.93-101, 2012.

B. Heurtault, P. Saulnier, B. Pech, J. Proust, and J. Benoit, A novel phase inversion-based process for the preparation of lipid nanocarriers, Pharm. Res, vol.19, pp.875-880, 2002.

J. Hureaux, Lipid nanocapsules: ready-to-use nanovectors for the aerosol delivery of paclitaxel, Eur. J. Pharm. Biopharm, vol.73, pp.239-246, 2009.

E. Roger, F. Lagarce, E. Garcion, and J. Benoit, Reciprocal competition between lipid nanocapsules and P-gp for paclitaxel transport across Caco-2 cells, Eur. J. Pharm. Sci, vol.40, pp.422-429, 2010.

A. Vonarbourg, The encapsulation of DNA molecules within biomimetic lipid nanocapsules, Biomaterials, vol.30, pp.3197-3204, 2009.

Y. Xie, PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy, Biomaterials, vol.35, pp.7978-7991, 2014.

A. Paillard, F. Hindre, C. Vignes-colombeix, J. Benoit, and E. Garcion, The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability, Biomaterials, vol.31, pp.7542-7554, 2010.

A. Elouahabi and J. Ruysschaert, Formation and intracellular trafficking of lipoplexes and polyplexes, Mol. Ther, vol.11, pp.336-347, 2005.

Y. Ma, Enhanced bactericidal potency of nanoliposomes by modi?cation of the fusion activity between liposomes and bacterium, Int. J. Nanomed, vol.8, pp.2351-2360, 2013.

A. Laine, Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring, J. Control. Release, vol.188, pp.1-8, 2014.

C. Rangger, In?uence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles, Int. J. Nanomed, vol.7, pp.5889-5900, 2012.

Y. Li, M. Kröger, and W. K. Liu, Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the gra?ed polyethylene glycol, Biomaterials, vol.35, pp.8467-8478, 2014.

E. C. Cho, Q. Zhang, and Y. Xia, The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles, Nat. Nanotechnol, vol.6, pp.385-391, 2011.

W. Dai, A comprehensive study of iRGD-modi?ed liposomes with improved chemotherapeutic efficacy on B16 melanoma, Drug Deliv, vol.22, pp.10-20, 2015.

A. D. Friedman, S. E. Claypool, and R. Liu, The smart targeting of nanoparticles, Curr. Pharm. Des, vol.19, pp.6315-6329, 2013.

N. T. Huynh, E. Roger, N. Lautram, J. Benoit, and C. Passirani, The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting, Nanomedicine, vol.5, pp.1415-1433, 2010.

Y. Kato, Acidic extracellular microenvironment and cancer, Cancer Cell Int, p.89, 2013.

K. Möller, Highly efficient siRNA delivery from coreshell mesoporous silica nanoparticles with multifunctional polymer caps, Nanoscale, vol.7, p.4007, 2016.

S. Guo, Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte, ACS Nano, vol.4, pp.5505-5511, 2010.

L. Kirkpatrick, Carbon Nanotubes: Solution for the Therapeutic Delivery of siRNA?, Materials, vol.5, pp.278-301, 2012.

G. Cavallaro, C. Sardo, E. F. Craparo, B. Porsio, and G. Giammona, Polymeric nanoparticles for siRNA delivery: production and applications, Int. J. Pharm, vol.525, pp.313-333, 2017.

T. S. Zatsepin, Y. V. Kotelevtsev, and V. Koteliansky, Lipid nanoparticles for targeted siRNA delivery -going from bench to bedside, Int. J. Pharm, vol.11, pp.3077-3086, 2016.

G. Bastiat, A new tool to ensure the ?uorescent dye labeling stability of nanocarriers: a real challenge for ?uorescence imaging, J. Control. Release, vol.170, pp.334-342, 2013.

E. Van-bracht, Enhanced cellular uptake of albuminbased lyophilisomes when functionalized with cellpenetrating peptide TAT in HeLa cells, PloS one, vol.9, p.110813, 2014.

G. K. Srivastava, Trypan Blue staining method for quenching the auto?uorescence of RPE cells for improving protein expression analysis, Exp. Eye Res, vol.93, pp.956-962, 2011.