M. Elsabbagh, G. Divan, Y. J. Koh, Y. S. Kim, S. Kauchali et al., Global prevalence of autism and other pervasive developmental disorders, Autism Res, vol.5, pp.160-179, 2012.

Y. S. Kim, B. L. Leventhal, Y. J. Koh, E. Fombonne, E. Laska et al., Prevalence of autism spectrum disorders in a total population sample, Am. J. Psychiatry, vol.168, pp.904-912, 2011.

T. Gliga, E. J. Jones, R. Bedford, T. Charman, and M. H. Johnson, From early markers to neuro-developmental mechanisms of autism, Developmental Rev, vol.34, pp.189-207, 2014.

N. N. Parikshak, M. J. Gandal, and D. H. Geschwind, Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders, Nat. Rev. Genet, vol.16, p.441, 2015.

T. Gaugler, L. Klei, S. J. Sanders, C. A. Bodea, A. P. Goldberg et al., Most genetic risk for autism resides with common variation, Nat. Genet, vol.46, p.881, 2014.

B. S. Abrahams and D. H. Geschwind, Advances in autism genetics: on the threshold of a new neurobiology, Nat. Rev. Genet, vol.9, pp.341-355, 2008.

J. M. Berg and D. H. Geschwind, Autism genetics: searching for specificity and convergence, Genome Biol, vol.13, p.247, 2012.

L. De-la-torre-ubieta, H. Won, J. L. Stein, and D. H. Geschwind, Advancing the understanding of autism disease mechanisms through genetics, Nat. Med, vol.22, p.345, 2016.

J. Grove, S. Ripke, T. D. Als, M. Mattheisen, R. K. Walters et al., Identification of common genetic risk variants for autism spectrum disorder, Nat. Genet, vol.41, pp.431-444, 2019.

I. Voineagu, X. Wang, P. Johnston, J. K. Lowe, Y. Tian et al., Transcriptomic analysis of autistic brain reveals convergent molecular pathology, Nature, p.380, 2011.

N. N. Parikshak, V. Swarup, T. G. Belgard, M. Irimia, G. Ramaswami et al., Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism, Nature, vol.540, pp.423-427, 2016.

W. Sun, J. Poschmann, R. C. Del-rosario, .. Parikshak, N. N. Hajan et al., Histone acetylomewide association study of autism spectrum disorder, Cell, vol.167, pp.1385-1397, 1311.

A. V. Ciernia and J. Lasalle, The landscape of DNA methylation amid a perfect storm of autism aetiologies, Nat. Rev. Neurosci, vol.17, p.411, 2016.

H. Wu, V. Coskun, J. Tao, W. Xie, W. Ge et al., Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes, Science, vol.329, pp.444-448, 2010.

B. Yao, K. M. Christian, C. He, P. Jin, G. Ming et al., Epigenetic mechanisms in neurogenesis, Nat. Rev. Neurosci, vol.17, p.537, 2016.

P. Tognini, D. Napoli, and T. Pizzorusso, Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity, Front. Cell. Neurosci, vol.9, p.331, 2015.

F. D. Heyward and J. D. Sweatt, DNA methylation in memory formation: emerging insights, Neuroscientist, vol.21, pp.475-489, 2015.

I. B. Zovkic, M. C. Guzman-karlsson, and J. D. Sweatt, Epigenetic regulation of memory formation and maintenance, Learn. Mem, vol.20, pp.61-74, 2013.

H. Spiers, E. Hannon, L. C. Schalkwyk, R. Smith, C. C. Wong et al., Methylomic trajectories across human fetal brain development, Genome Res, vol.25, pp.338-352, 2015.

A. M. Persico and T. Bourgeron, Searching for ways out of the autism maze: genetic, epigenetic and environmental clues, Trends Neurosci, vol.29, pp.349-358, 2006.

D. Grafodatskaya, B. Chung, P. Szatmari, and R. Weksberg, Autism spectrum disorders and epigenetics, J. Am. Acad. Child Adolesc. Psychiatry, vol.49, pp.794-809, 2010.

Y. J. Loke, A. J. Hannan, and J. M. Craig, The role of epigenetic change in autism spectrum disorders, Front. Neurol, vol.6, p.107, 2015.

C. Ladd-acosta, K. D. Hansen, E. Briem, M. D. Fallin, W. E. Kaufmann et al., Common DNA methylation alterations in multiple brain regions in autism, Mol. Psychiatry, vol.19, pp.862-871, 2014.

M. R. Ginsberg, R. A. Rubin, T. Falcone, A. H. Ting, and M. R. Natowicz, Brain transcriptional and epigenetic associations with autism, PLoS One, vol.7, p.44736, 2012.

A. Nguyen, T. A. Rauch, G. P. Pfeifer, and V. W. Hu, Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain, FASEB J, vol.24, pp.3036-3051, 2010.

S. Nardone, D. S. Sams, A. Zito, E. Reuveni, and E. Elliott, Dysregulation of cortical neuron DNA methylation profile in autism spectrum disorder, Cerebral Cortex, vol.12, pp.5739-5754, 2017.

S. Nardone, D. S. Sams, E. Reuveni, D. Getselter, O. Oron et al., DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways, Transl. Psychiatry, vol.4, p.433, 2014.

C. C. Wong, E. L. Meaburn, A. Ronald, T. S. Price, A. R. Jeffries et al., Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits, Mol. Psychiatry, vol.19, pp.495-503, 2014.

E. Hannon, D. Schendel, C. Ladd-acosta, J. Grove, C. S. Hansen et al., Elevated polygenic burden for autism is associated with differential DNA methylation at birth, Genome Med, vol.10, p.19, 2018.

K. W. Dunaway, M. S. Islam, R. L. Coulson, S. J. Lopez, A. V. Ciernia et al., Cumulative impact of polychlorinated biphenyl and large chromosomal duplications on DNA methylation, chromatin, and expression of autism candidate genes, Cell Rep, vol.17, pp.3035-3048, 2016.

A. Vogel-ciernia, B. I. Laufer, K. W. Dunaway, C. E. Mordaunt, R. L. Coulson et al., Epigenomic convergence of genetic and immune risk factors in autism brain. bioRxiv, p.270827, 2018.

D. Schübeler, Function and information content of DNA methylation, Nature, vol.517, p.321, 2015.

R. J. Schroer, M. C. Phelan, R. C. Michaelis, E. C. Crawford, S. A. Skinner et al., Autism and maternally derived aberrations of chromosome 15q, Am. J. Med. Genet, vol.76, pp.327-336, 1998.

C. Depienne, D. Moreno-de-luca, D. Heron, D. Bouteiller, A. Gennetier et al., Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders, Biol. Psychiatry, vol.66, pp.349-359, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00369261

P. T. Tsai, C. Hull, Y. Chu, E. Greene-colozzi, A. R. Sadowski et al., Autistic-like behavior and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice, Nature, p.647, 2012.

N. Hadjikhani, R. M. Joseph, J. Snyder, and H. Tager-flusberg, Anatomical differences in the mirror neuron system and social cognition network in autism, Cereb. Cortex, vol.16, pp.1276-1282, 2005.

E. Courchesne, K. Pierce, C. M. Schumann, E. Redcay, J. A. Buckwalter et al., Mapping early brain development in autism, Neuron, vol.56, pp.399-413, 2007.

S. Horvath, DNA methylation age of human tissues and cell types, Genome Biol, vol.14, p.3156, 2013.

S. Horvath, Erratum to: DNA methylation age of human tissues and cell types, Genome Biol, vol.16, p.96, 2015.

K. Lunnon, R. Smith, E. Hannon, P. L. De-jager, G. Srivastava et al., Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease, Nature Neurosci, vol.17, pp.1164-1170, 2014.

J. Viana, E. Hannon, E. Dempster, R. Pidsley, R. Macdonald et al., Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions, Hum. Mol. Genet, vol.26, pp.210-225, 2016.

M. N. Davies, M. Volta, R. Pidsley, K. Lunnon, A. Dixit et al., Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood, Genome Biol, vol.13, p.43, 2012.

B. S. Pedersen, D. A. Schwartz, I. V. Yang, and K. J. Kechris, Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values, Bioinformatics, vol.28, pp.2986-2988, 2012.

N. N. Parikshak, V. Swarup, T. G. Belgard, M. Irimia, G. Ramaswami et al., Genome-wide changes in lncRNA, alternative splicing, p.77057, 2016.

P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, vol.9, p.559, 2008.

S. Nazeen, N. P. Palmer, B. Berger, and I. S. Kohane, Integrative analysis of genetic data sets reveals a shared innate immune component in autism spectrum disorder and its co-morbidities, Genome Biol, vol.17, p.228, 2016.

S. Gupta, S. E. Ellis, F. N. Ashar, A. Moes, J. S. Bader et al., Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism, Nature Commun, vol.5, p.5748, 2014.

M. L. Estes and A. K. Mcallister, Immune mediators in the brain and peripheral tissues in autism spectrum disorder, Nat. Rev. Neurosci, vol.16, p.469, 2015.

L. A. Needleman and A. K. Mcallister, The major histocompatibility complex and autism spectrum disorder, Dev. Neurobiol, vol.72, pp.1288-1301, 2012.

A. Brunet, S. R. Datta, and M. E. Greenberg, Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway, Curr. Opin. Neurobiol, vol.11, pp.297-305, 2001.

H. O. Kalkman, A review of the evidence for the canonical Wnt pathway in autism spectrum disorders, Mol. Autism, vol.3, p.10, 2012.

A. J. Law, Y. Wang, Y. Sei, P. O'donnell, P. Piantadosi et al., Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110? inhibition as a potential therapeutic strategy, Proc. Natl. Acad. Sci. USA, vol.109, pp.12165-12170, 2012.

L. Enriquez-barreto and M. Morales, The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia, Mol. Cell. Ther, vol.4, 2016.

T. Bourgeron, A synaptic trek to autism, Curr. Opin. Neurobiol, vol.19, pp.231-234, 2009.

E. Aref-eshghi, D. I. Rodenhiser, L. C. Schenkel, H. Lin, C. Skinner et al., Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes, Am. J. Hum. Genet, vol.102, pp.156-174, 2018.

A. Kundaje, W. Meuleman, J. Ernst, M. Bilenky, A. Yen et al., Integrative analysis of 111 reference human epigenomes, Nature, vol.518, p.317, 2015.

S. Akbarian, C. Liu, J. A. Knowles, F. M. Vaccarino, P. J. Farnham et al., The psychencode project, Nat. Neurosci, vol.18, p.1707, 2015.

J. Mill and B. T. Heijmans, From promises to practical strategies in epigenetic epidemiology, Nat. Rev. Genet, vol.14, p.585, 2013.

M. R. Branco, G. Ficz, and W. Reik, Uncovering the role of 5-hydroxymethylcytosine in the epigenome, Nat. Rev. Genet, vol.13, p.7, 2012.

K. Lunnon, E. Hannon, R. G. Smith, E. Dempster, C. Wong et al., Variation in 5-hydroxymethylcytosine across human cortex and cerebellum, Genome Biol, vol.17, p.27, 2016.

H. Spiers, E. Hannon, L. C. Schalkwyk, N. J. Bray, and J. Mill, 2017) 5-hydroxymethylcytosine is highly dynamic across human fetal brain development, BMC Genomics, vol.18, p.738

R. D. Team, R Foundation for Statistical Computing, 2010.

S. Davis, P. Du, S. Bilke, T. Triche, and M. Bootwalla, Methylumi: handle Illumina methylation data, R package, 2018.

R. Pidsley, C. C. Wong, M. Volta, K. Lunnon, J. Mill et al., A data-driven approach to preprocessing Illumina 450K methylation array data, BMC Genomics, vol.14, p.293, 2013.

Y. A. Chen, M. Lemire, S. Choufani, D. T. Butcher, D. Grafodatskaya et al., Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium Human Methylation 450 microarray, Epigenetics, vol.8, pp.203-209, 2013.

M. E. Price, A. M. Cotton, L. L. Lam, P. Farre, E. Emberly et al., Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array, Epigenetics Chromatin, vol.6, p.4, 2013.

W. E. Johnson, C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics, vol.8, pp.118-127, 2007.

T. J. Morris, L. M. Butcher, A. Feber, A. E. Teschendorff, A. R. Chakravarthy et al., ChAMP: 450k Chip Analysis Methylation Pipeline, Bioinformatics, vol.1, pp.428-430, 2014.

J. Guintivano, M. J. Aryee, and Z. A. Kaminsky, A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression, Epigenetics, vol.8, pp.290-302, 2013.

Z. ?idák, Rectangular confidence regions for the means of multivariate normal distributions, J. Am. Stat. Assoc, vol.62, pp.626-633, 1967.