, Ahmedabad, India) for his 768 help in writing the second chemical part, San Francisco Edit for their help in editing and 769 rewriting this manuscript, and finally Drs, Acknowledgments: JAB wishes to thank Dr. Hemal Soni, p.770

). France, N. Gould-&-kobi, and . Rosenblum, , p.771

. Germany, We 776 thank Cécile Bureau and Laetitia Da Costa for their technical help. Dr. D.A. Kane 777 acknowledges support from the Canada Foundation for Innovation and the Natural Sciences 778 and Engineering Research Council of Canada, Hirsch and P. Michel acknowledge the 772 support of the funding programs "Investissements d'avenir" ANR-10-IAIHU-06 and 773 "Investissements d'avenir, p.779

M. Bell, L. Davidson, and H. E. Wallace,

. E. Dr, Italy and from FFARB 2017 (Basic Research Activities Fund) and wishes to thank Dr, Biano, vol.781

C. Martino and (. Catanzaro, Italy) for technical assistance

, Boutin and Gilles Ferry conceived the project, organized 784 the paper, and wrote the introduction and discussion, Authorship Contributions: Jean A, p.785

, Johann Stojko developed and ran the enzymology experiments, wrote the related materials 786 and methods and the results, and designed the corresponding figures, p.787

, Thierry Le Diguarher developed and ran the drug metabolism experiments and wrote the 788 related materials and methods and the results

D. A. Brebner, Kane designed and ran the mitochondria experiments, wrote the 790 related materials and methods and the results, and designed the corresponding figures

S. Alnabulsi, B. Hussein, S. E. Alsalahat, I. Kadirvel, M. Magwaza et al., Evaluation of analogues of furan-amidines as inhibitors of 920 NQO2, Bioorganic & Medicinal Chemistry Letters, vol.28, pp.1292-1297, 2018.

M. Antoine, E. Marcheteau, P. Delagrange, G. Ferry, and J. A. Boutin, Characterization of cofactors, 922 substrates and inhibitor binding to flavoenzyme quinone reductase 2 by automated supramolecular nano-923 electrospray ionization mass spectrometry, International Journal of Mass Spectrometry, vol.312, pp.87-96, 2012.

L. Bartolini, F. Casamenti, and G. Pepeu, Aniracetam restores object recognition impaired by age, 926 scopolamine, and nucleus basalis lesions, Pharmacol Biochem Behav, vol.53, pp.277-283, 1996.

C. E. Benoit, S. Bastianetto, J. Brouillette, Y. Tse, J. A. Boutin et al., Loss of quinone reductase 2 function selectively facilitates learning behaviors, J. Neurosci, vol.929, pp.12690-12700, 2010.

C. E. Benoit, W. B. Rowe, C. Menard, P. Sarret, and R. Quirion, Genomic and proteomic strategies to identify 931 novel targets potentially involved in learning and memory, Trends Pharmacol. Sci, vol.32, pp.43-52, 2011.

R. A. Bevins and J. Besheer, Object recognition in rats and mice: A one-trial non-matching-to-sample 934 learning task to study 'recognition memory, Nat. Protoc, vol.1, pp.1306-1311, 2006.

G. Bhattacharya, T. Su, C. Chia, and C. , Synthesis and Autoxidation of New Tetracyclic 9 H 936 ,10 H -Indolizino[1,2-b ]indole-1-ones, J. Org. Chem, vol.66, pp.426-432, 2001.

J. Bian, X. Li, L. Xu, N. Wang, X. Qian et al., Affinity-based small fluorescent probe for 938 NAD(P)H: Quinone oxidoreductase 1 (NQO1). Design, synthesis and pharmacological evaluation, Eur. J 939 Med. Chem, vol.127, pp.828-839, 2017.

A. Bindoli, M. P. Rigobello, and L. Galzigna, Reduction of adrenochrome by rat liver and brain DT-941 diaphorase, Free Radic. Res Commun, vol.8, pp.295-298, 1990.

J. L. Bolton, M. A. Trush, T. M. Penning, G. Dryhurst, and M. Tj, Role of quinones in toxicology, Chem 943 Res Toxicol, vol.13, pp.135-160, 2000.

J. Booher and M. Sensenbrenner, Growth and cultivation of dissociated neurons and glial cells from 945 embryonic chick, rat and human brain in flask cultures, Neurobiology, vol.2, pp.97-105, 1972.

M. F. Boussard, S. Truche, A. Rousseau-rojas, S. Briss, S. Descamps et al., New ligands at the melatonin binding site MT(3), Eur. J Med, 2006.

, Chem, vol.41, pp.306-320

J. A. Boutin, Quinone reductase 2 as a promising target of melatonin therapeutic actions, Expert. Opin, 2016.

. Ther and . Targets, , vol.20, pp.303-317

J. A. Boutin, F. Chatelain-egger, F. Vella, P. Delagrange, and G. Ferry, Quinone reductase 2 substrate 952 specificity and inhibition pharmacology, Chem. Biol. Interact, vol.151, pp.213-228, 2005.

J. Brouillette and R. Quirion, Transthyretin: A key gene involved in the maintenance of memory capacities 954 during aging, Neurobiology of Aging, vol.29, pp.1721-1732, 2008.

L. Buryanovskyy, Y. Fu, M. Boyd, Y. Ma, T. Hsieh et al., Crystal structure of quinone 956 reductase 2 in complex with resveratrol, Biochemistry, vol.43, pp.11417-11426, 2004.

L. E. Cassagnes, P. Perio, G. Ferry, N. Moulharat, M. Antoine et al., In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the 959 redox cycling of 1,2 and 1,4 quinones. Free Radic, Biol. Med, vol.958, pp.126-134, 2015.

L. E. Cassagnes, N. Rakotoarivelo, S. Sirigu, P. Perio, E. Najahi et al., , p.962

J. A. Boutin, A. Valentin, K. Reybier, and F. Nepveu, Role of Quinone Reductase 2 in the Antimalarial 963 Properties of Indolone-Type Derivatives, Molecules, vol.22, 2017.

R. Cechelli, B. Dehouck, L. Descamps, L. Fenart, V. Buee-scherrer et al., 965 and Dehouck MP (1999) In vitro model for evaluating drug transport across the blood-brain-barrier, Adv. 966 Drug Deliv. Rev, vol.36, pp.165-178

D. Chen, X. Li, X. Liu, X. Liu, X. Jiang et al., NQO2 inhibition relieves 968 reactive oxygen species effects on mouse oocyte meiotic maturation and embryo development, Biol Reprod, vol.969, pp.598-611, 2017.

T. E. Conover and L. Ernster, Mitochondrial oxidation of extra-mitochondrial TPNH1 mediated by purified 971 DT diaphorase, Biochem Biophys Res Commun, vol.2, pp.26-30, 1960.

M. D'amelio, S. Puglisi-allegra, and N. Mercuri, The role of dopaminergic midbrain in Alzheimer's 973 disease: Translating basic science into clinical practice, Pharmacological Research, vol.130, pp.414-419, 2018.

R. K. Dagda, D. Banerjee, T. , and J. E. , How Parkinsonian toxins dysregulate the autophagy machinery, 2013.

R. M. Toorneman, S. Van-leeuwen, Y. Zhang, and S. J. Dekker, Vermeulen 978 NPE, Commandeur JNM, and Vos JC (2017) Reduction and scavenging of chemically reactive drug 979 metabolites by NAD(P)H: Quinone oxidoreductase 1 and NRH:quinone oxidoreductase 2 and variability in 980 hepatic concentrations, Chem Res Toxicol, vol.14, pp.22163-22189

J. S. Duncan, L. Gyenis, J. Lenehan, M. Bretner, L. M. Graves et al., An unbiased 982 evaluation of CK2 inhibitors by chemoproteomics: Characterization of inhibitor effects on CK2 and 983 identification of novel inhibitor targets, Mol Cell Proteomics, vol.7, pp.1077-1088, 2008.

M. J. Duncan, J. S. Takahashi, and D. Ml, 2-[125I]iodomelatonin binding sites in hamster brain 986 membranes: Pharmacological characteristics and regional distribution, Endocrinology, vol.122, pp.1825-1833, 1988.

A. Ennaceur and J. Delacour, A new one-trial test for neurobiological studies of memory in rats. 1: 989 Behavioral data, Behav Brain Res, vol.31, pp.47-59, 1988.

L. Ernster, L. Danielson, and L. , DT diaphorase. I. Purification from the soluble fraction of 991 rat-liver cytoplasm, and properties, Biochim. Biophys. Acta, vol.58, pp.171-188, 1962.

G. Ferry, S. Hecht, S. Berger, N. Moulharat, F. Coge et al., Old and new inhibitors of quinone reductase 2, Chem. Biol. Interact, vol.186, pp.103-109, 2010.

C. Gerard, G. Ferry, L. M. Vuillard, J. A. Boutin, N. Ferte et al., , p.996, 2018.

, Chemical Library to Screen Protein and Protein-Ligand Crystallization Using a Versatile Microfluidic 997 Platform, Crystal Growth & Design

C. J. Groß, R. Mishra, K. S. Schneider, G. Médard, J. Wettmarshausen et al., , vol.999

S. Fromm, G. Magnani, T. ?ikovi?, L. Hartjes, J. Smollich et al.,

M. Schuster, M. Schroder, K. Broz, P. Traidl-hoffmann, C. Beutler et al., , p.1001

F. Perocchi and O. Groß, K + Efflux-Independent NLRP3 Inflammasome Activation by Small 1002 Molecules Targeting Mitochondria, Immunity, vol.45, pp.761-773, 2016.

S. Guerreiro, D. Toulorge, E. Hirsch, M. Marien, P. Sokoloff et al., Paraxanthine, the primary 1004 metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine 1005 receptor channels, Mol. Pharmacol, vol.74, pp.980-989, 2008.

S. Harada, C. Fujii, A. Hayashi, and N. Ohkoshi, An Association between Idiopathic Parkinson's Disease 1007 and Polymorphisms of Phase II Detoxification Enzymes: Glutathione S-Transferase, 2001.

, Oxidoreductase 1 and 2, Biochem Biophys Res Commun, vol.288, pp.887-892

E. Janda, C. Isidoro, C. Carresi, and V. Mollace, Defective autophagy in Parkinson's disease: Role of 1010 oxidative stress, Mol Neurobiol, vol.46, pp.639-661, 2012.

E. Janda, A. Lascala, C. Carresi, M. Parafati, S. Aprigliano et al., , p.1012

C. Isidoro and V. Mollace, Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in 1013 astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection, Autophagy, vol.11, pp.1063-1080, 2015.

E. Janda, M. Parafati, S. Aprigliano, C. Carresi, V. Visalli et al., , p.1016

V. Musolino, E. Palma, S. Gratteri, D. Rotiroti, and V. Mollace, The antidote effect of quinone 1017 oxidoreductase 2 inhibitor against paraquat-induced toxicity in vitro and in vivo, Br. J Pharmacol, vol.168, pp.46-1018, 2013.

Y. Jiang, J. Liu, D. Chen, L. Yan, and W. Zheng, Sirtuin Inhibition: Strategies, Inhibitors, and Therapeutic 1020 Potential, Trends Pharmacol. Sci, vol.38, pp.459-472, 2017.

H. Kappus and H. Sies, Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid 1022 peroxidation, Experientia, vol.37, pp.1233-1241, 1981.

R. J. Knox, P. J. Burke, S. Chen, and D. J. Kerr, CB 1954: From the Walker tumor to NQO2 and VDEPT, Curr. 1024 Pharm. Des, vol.9, pp.2091-2104, 2003.

F. Kuribayashi, S. Tsuruta, T. Yamazaki, H. Nunoi, S. Imajoh-ohmi et al., Cell 1026 adhesion markedly increases lucigenin-enhanced chemiluminescence of the phagocyte NADPH oxidase, 2008.

, Genes Cells, vol.13, pp.1249-1256

A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter et al., Analysis of mitochondrial 1029 function in situ in permeabilized muscle fibers, tissues and cells, Nat. Protoc, vol.3, pp.965-976, 2008.

J. J. Kwiek, T. A. Haystead, and R. J. , Kinetic mechanism of quinone oxidoreductase 2 and its inhibition 1032 by the antimalarial quinolines, Biochemistry, vol.43, pp.4538-4547, 2004.

A. Lascala, C. Martino, M. Parafati, R. Salerno, M. Oliverio et al., Analysis 1034 of proautophagic activities of Citrus flavonoids in liver cells reveals the superiority of a natural polyphenol 1035 mixture over pure flavones, The Journal of Nutritional Biochemistry, vol.58, pp.119-130, 2018.

J. Lavrado, A. Paulo, J. Gut, P. J. Rosenthal, and R. Moreira, Cryptolepine analogues containing basic 1038 aminoalkyl side-chains at C-11: Synthesis, antiplasmodial activity, and cytotoxicity. Bioorganic & 1039, Medicinal Chemistry Letters, vol.18, pp.1378-1381, 2008.

K. K. Leung and B. H. Shilton, Chloroquine binding reveals flavin redox switch function of quinone 1041 reductase 2, J Biol. Chem, vol.288, pp.11242-11251, 2013.

K. K. Leung and B. H. Shilton, Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors 1043, 2015.

(. Tbbz and D. Tbi), Biochemistry, vol.54, pp.47-59

S. Liao, J. Dulaney, and W. Hg, Purification and properties of a flavoprotein catalyzing the 1045 oxidation of reduced ribosyl nicotinamide, J Biol. Chem, vol.237, pp.2981-2987, 1962.

S. Liao and W. Hg, Enzymatic oxidation of some non-phosphorylated derivatives of 1047 dihydronicotinamide, Biochem. Biophys. Res Commun, vol.4, pp.208-213, 1961.

F. Mailliet, G. Ferry, F. Vella, K. Thiam, P. Delagrange et al., Organs from mice deleted for 1049 NRH:quinone oxidoreductase 2 are deprived of the melatonin binding site MT3, FEBS Lett, vol.578, pp.116-120, 1050.

F. Mcnab, A. Varrone, L. Farde, A. Jucaite, P. Bystritsky et al., , p.1052, 2009.

, Cortical Dopamine D1 Receptor Binding Associated with Cognitive Training, vol.323, pp.800-802

S. Michaelis, A. Marais, A. K. Schrey, O. Y. Graebner, C. Schaudt et al., Dabigatran and dabigatran ethyl ester: Potent inhibitors of 1056 ribosyldihydronicotinamide dehydrogenase (NQO2), J. Med. Chem, vol.55, pp.3934-3944, 2012.

M. J. Millan, L. M. Cour, C. Chanrion, B. Dupuis, D. S. et al., , 1059.

A. Kamal, M. Boutin, J. A. Jockers, R. Marin, P. Bockaert et al., , p.1060, 2012.

, S32212, a Novel Serotonin Type 2C Receptor Inverse Agonist/ 2-Adrenoceptor Antagonist and Potential 1061 Antidepressant: I. A Mechanistic Characterization, vol.340, pp.750-764

T. Nishiyama, T. Izawa, M. Usami, T. Ohnuma, K. Ogura et al., Cooperation of 1064 NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in 1065 HEK293 cells, Biochem. Biophys. Res Commun, vol.394, pp.459-463, 2010.

A. Nobili, E. C. Latagliata, M. T. Viscomi, V. Cavallucci, D. Cutuli et al., , p.1067

M. Federici, P. Bartolo, . De, D. Aversa, M. C. Dell'acqua et al., , p.1068

S. Puglisi-allegra, N. B. Mercuri, R. Coccurello, N. Berretta, D. Amelio et al., Dopamine neuronal loss 1069 contributes to memory and reward dysfunction in a model of Alzheimer's disease, Nat Comms, vol.8, 2017.

O. Nosjean, M. Ferro, F. Coge, P. Beauverger, J. M. Henlin et al., , p.1072

J. A. Boutin, Identification of the melatonin-binding site MT3 as the quinone reductase 2, J Biol. Chem. 1073, vol.275, pp.31311-31317, 2000.

O. Nosjean, J. P. Nicolas, F. Klupsch, P. Delagrange, E. Canet et al., Comparative pharmacological 1075 studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2, Biochem. 1076 Pharmacol, vol.61, pp.1369-1379, 2001.

L. M. Nutter, E. O. Ngo, G. R. Fisher, and P. L. Gutierrez, DNA strand scission and free radical production in 1078 menadione-treated cells. Correlation with cytotoxicity and role of NADPH quinone acceptor oxidoreductase, 1079 J Biol. Chem, vol.267, pp.2474-2479, 1992.

O. Onyeibor, S. L. Croft, H. I. Dodson, M. Feiz-haddad, H. Kendrick et al., Synthesis of Some Cryptolepine Analogues, p.1082, 2005.

, Assessment of Their Antimalarial and Cytotoxic Activities, and Consideration of Their Antimalarial Mode 1083 of Action, J. Med. Chem, vol.48, pp.2701-2709

P. Paul, C. Lahaye, P. Delagrange, J. P. Nicolas, E. Canet et al., Characterization of 2-1085 [125I]iodomelatonin binding sites in Syrian hamster peripheral organs, J Pharmacol. Exp. Ther, vol.290, p.340, 1999.

S. D. Pegan, M. Sturdy, G. Ferry, P. Delagrange, J. A. Boutin et al., X-ray structural studies of 1088 quinone reductase 2 nanomolar range inhibitors, Protein Sci, vol.20, pp.1182-1195, 2011.

C. G. Perry, D. A. Kane, I. R. Lanza, and P. D. Neufer, Methods for assessing mitochondrial function in diabetes, Diabetes, vol.62, pp.1041-1053, 1090.

C. G. Perry, D. A. Kane, C. T. Lin, R. Kozy, B. L. Cathey et al., , p.1092

P. D. Neufer, Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control 1093 in skeletal muscle, Biochem. J, vol.437, pp.215-222, 2011.

D. Pesta and E. Gnaiger, High-resolution respirometry: OXPHOS protocols for human cells and 1095 permeabilized fibers from small biopsies of human muscle, Methods Mol. Biol, vol.810, pp.25-58, 2012.

B. M. Polster, D. G. Nicholls, S. X. Ge, and R. Ba, Use of potentiometric fluorophores in the 1098 measurement of mitochondrial reactive oxygen species, Meth Enzymol, vol.547, pp.225-250, 2014.

A. N. Rappaport, E. Jacob, V. Sharma, S. Inberg, A. Elkobi et al., , p.1101

K. Rosenblum, Expression of Quinone Reductase-2 in the Cortex Is a Muscarinic Acetylcholine 1102 Receptor-Dependent Memory Consolidation Constraint, J. Neurosci, vol.35, pp.15568-15581, 2015.

P. Reddy, K. C. Jensen, A. D. Mesecar, P. E. Fanwick, and M. Cushman, Design, Synthesis, and Biological 1105 Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors of Quinone 1106 Reductase 2, J. Med. Chem, vol.55, pp.367-377, 2011.

K. Reybier, P. Perio, G. Ferry, J. Bouajila, P. Delagrange et al., Insights into the redox 1108 cycle of human quinone reductase 2, Free Radic. Res, vol.45, pp.1184-1195, 2011.

U. Rix, O. Hantschel, G. Durnberger, R. Rix, L. L. Planyavsky et al., , p.1110

P. Valent, J. Colinge, T. Kocher, S. , and G. , Chemical proteomic profiles of the BCR-ABL 1111 inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets, Blood, vol.110, pp.4055-4063, 2007.

J. I. Rossato, L. Bevilaqua, I. Izquierdo, J. H. Medina, and M. Cammarota, Dopamine Controls Persistence 1114 of Long-Term Memory Storage, Science, vol.325, pp.1017-1020, 2009.

B. Salthun-lassalle, E. C. Hirsch, J. Wolfart, M. Ruberg, and M. Pp, Rescue of mesencephalic 1116 dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels, J. Neurosci. 1117, vol.24, pp.5922-5930, 2004.

S. Sasaki, S. Yamada, M. Iwamura, and Y. Kobayashi, Specific detection of intramitochondrial superoxide 1119 produced by either cell activation or apoptosis by employing a newly developed cell-permeative lucigenin 1120 derivative, 10,10'-dimethyl-9,9'-biacridinium bis(monomethyl terephthalate). Free Radic, Biol. Med. 1121, vol.65, pp.1005-1011, 2013.

K. A. Scott, J. Barnes, R. C. Whitehead, I. J. Stratford, and K. A. Nolan, Inhibitors of NQO1: Identification of 1123 compounds more potent than dicoumarol without associated off-target effects, Biochem Pharmacol, vol.81, pp.355-1124, 2011.

S. Sorce, R. Stocker, T. Seredenina, R. Holmdahl, A. Aguzzi et al., , p.1126

V. Duveau, D. Sanoudou, S. Skosgater, A. Vlahou, D. Wasquel et al., NADPH 1127 oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence? Free Radic, 2017.

, Biol. Med, vol.112, pp.387-396

G. Teixeira, C. Szyndralewiez, S. Molango, S. Carnesecchi, F. Heitz et al., Therapeutic 1130 potential of NADPH oxidase ¼ inhibitors, Br. J Pharmacol, vol.174, pp.1647-1669, 2017.

D. Toulorge, S. Guerreiro, A. Hild, U. Maskos, E. C. Hirsch et al., Neuroprotection of midbrain 1132 dopamine neurons by nicotine is gated by cytoplasmic Ca2+, FASEB J, vol.25, pp.2563-2573, 2011.

J. Troadec, M. Marien, F. Darios, A. Hartmann, M. Ruberg et al., Noradrenaline 1135 provides long-term protection to dopaminergic neurons by reducing oxidative stress, J Neurochem, vol.79, p.210, 2001.

L. R. Whittell, K. T. Batty, R. Wong, E. M. Bolitho, S. A. Fox et al., Synthesis and 1138 antimalarial evaluation of novel isocryptolepine derivatives, Bioorganic & Medicinal Chemistry, vol.19, pp.7519-1139, 2011.

W. D. Wosilait and A. Nason, Pyridine nucleotide-quinone reductase. I. Purification and properties of the 1141 enzyme from pea seeds, J Biol. Chem, vol.206, pp.255-270, 1954.

K. Wu, R. Knox, X. Z. Sun, P. Joseph, A. K. Jaiswal et al., Catalytic properties of 1143 NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase, Arch. Biochem. Biophys, vol.347, pp.221-228, 1144.

Q. Zhao, X. L. Yang, W. D. Holtzclaw, and P. Talalay, Unexpected genetic and structural relationships of a 1146 long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase), Proc. Natl. Acad. Sci. U. S. A, vol.1147, p.1150, 1997.